精英家教网 > 高中数学 > 题目详情

已知点A(-1,0)、B(1,0)和动点P满足:∠APB=2θ,且|PA|•|PB|cos2θ=1.
(1)求动点P的轨迹C的方程;
(2)设过点A的直线l交曲线C于E、F两点,若△BEF的面积等于数学公式,求直线l的方程.

解:(1)在△PAB中,
由余弦定理得|AB|2=|PA|2+|PB|2-2|PA|•|PB|cos2θ,
∴4=(|PA|+|PB|)2-2|PA||PB|(1+cos2θ)
=(|PA|+|PB|)2-4|PA|•|PB|cos2θ
=(|PA|+|PB|)2-4.

即动点P的轨迹为以A、B为两焦点的椭圆.
∴动点P的轨迹C的方程为:
(2)设直线l的方程为x=ty-1,

得到(t2+2)y2-2ty-1=0,
设E(x1,y1),F(x2,y2),


=
=
=
=
解得t2=1,
∴t=±1,
当t=±1,方程(t2+2)y2-2ty-1=0的△=4+4×3=16>0适合,
∴直线l的方程为x-y+1=0或x+y+1=0.
分析:(1)在△PAB中,由余弦定理得|AB|2=|PA|2+|PB|2-2|PA|•|PB|cos2θ,所以,由此能求出动点P的轨迹C的方程.
(2)设直线l的方程为x=ty-1,由,得到(t2+2)y2-2ty-1=0,设E(x1,y1),F(x2,y2),则=.由此能求出直线l的方程.
点评:本题主要考查直线与圆锥曲线的综合应用能力,综合性强,是高考的重点,易错点是知识体系不牢固.本题具体涉及到轨迹方程的求法及直线与双曲线的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连接BC并延长至D,使得|CD|=|BC|,求AC与OD的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,O为坐标原点,其中an、bn分别为等差数列和等比数列,若P1是线段AB的中点,设等差数列公差为d,等比数列公比为q,当d与q满足条件
 
时,点P1,P2,P3,…,Pn,…共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(1,0),M是平面上的一动点,过M作直线l:x=4的垂线,垂足为N,且|MN|=2|MB|.
(1)求M点的轨迹C的方程;
(2)当M点在C上移动时,|MN|能否成为|MA|与|MB|的等比中项?若能求出M点的坐标,若不能说明理.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A到图形C上每一个点的距离的最小值称为点A到图形C的距离.已知点A(1,0),圆C:x2+2x+y2=0,那么平面内到圆C的距离与到点A的距离之差为1的点的轨迹是(  )

查看答案和解析>>

同步练习册答案