精英家教网 > 高中数学 > 题目详情
19.计算:[3$\frac{1}{3}$÷(-$\frac{2}{3}$)×$\frac{1}{5}$]4-2×(-3)3-(-5)2

分析 利用指数幂的运算性质即可得出.

解答 解:原式=$[\frac{10}{3}×(-\frac{3}{2})×\frac{1}{5}]^{4}$-2×(-27)-25
=1+54-25
=30.

点评 本题考查了指数幂的运算性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知全集U=R,集合A={x|1≤x≤3或4<x<6},集合B={x|2≤x<5},求下列集合:
(1)∁UA及∁UB;
(2)A∩(∁UB);
(3)(∁UA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知tanα-$\frac{1}{tanα}$=$\frac{8}{3}$.求3sin2α-cos2α的值;
(2)已知sin(3π+θ)=$\frac{1}{4}$,求$\frac{cos(π+θ)}{cosθ[cos(π+θ)-1]}$+$\frac{sin(\frac{π}{2}-θ)}{cos(θ+2π)cos(π+θ)+cos(-θ)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的内角A、B、C的对边分别为a、b、c,且2sin2(B+C)=$\sqrt{3}$sin 2A.
(1)求A的大小;
(2)若a=7,b=5,求△ABC的面积S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$
(1)求目标函数z=$\frac{1}{2}$x-y+$\frac{1}{2}$的最值;
(2)①若目标函数z=ax+2y仅在点(1,0)处取得最小值,求a的取值范围;
②若目标函数z=ax+2y取最小值时最优解无数多个,求a的取值范围;
③若目标函数z=ax+2y取最大值时最优解无数多个,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知实数a,b满足0<a<b+1,试判断a2-1与b2+2b的大小.
(2)已知实数x,y,试判断x2+xy+y2的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设等差数列{an}的前n项和为Sn,若a1<0,S2015=0.
(1)求Sn的最小值及此时n的值;
(2)求n的取值集合,使an≥Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的增函数f(x)对?x∈R,有f3(x)=2015f(x3),则f2(-1)=2015.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)是定义在[-6,11]上的函数.如果f(x)在区间[-6,-2]上递减,在区间[-2,11]上递增,画出f(x)的大致图象,从图象上可以发现f(-2)是函数f(x)的一个极小值.

查看答案和解析>>

同步练习册答案