精英家教网 > 高中数学 > 题目详情

已知函数
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

(1);(2)实数的取值范围是;(3)实数的取值范围

解析试题分析:(1)求的导数,找出处的导数即切线的斜率,由点斜式列出直线的方程即可;(2)求出函数的定义域,在定义域内利用导数与函数增减性的关系,转化为恒成立问题进行求解即可;(3)讨论在定义域上的最值,分情况讨论的增减性,进而解决存在成立的问题即可.
(1)当时,函数
,曲线在点处的切线的斜率为
从而曲线在点处的切线方程为,即    3分
(2)
,要使在定义域内是增函数,只需内恒成立
由题意的图象为开口向上的抛物线,对称轴方程为
,     只需,即时,
内为增函数,正实数的取值范围是         7分
(3)∵上是减函数
时,时,,即
①当时,,其图象为开口向下的抛物线,对称轴轴的左侧,且,所以内是减函数
时,,因为,所以
此时,内是减函数
故当时,上单调递减,不合题意
②当时,由,所以
又由(Ⅱ)知当时,上是增函数
,不合题意      12分
③当时,由(Ⅱ)知上是增函数,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,为自然对数的底数.
(I)求函数的极值;
(2)若方程有两个不同的实数根,试求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中的导函数.

(1)求的表达式;
(2)若恒成立,求实数的取值范围;
(3)设,比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数
(1)若x=2是函数的极值点,求的值;
(2)设函数,若≤0对一切都成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数,e=2.71828…是自然对数的底数),曲线在点处的切线与x轴平行.
(1)求k的值,并求的单调区间;
(2)设,其中的导函数.证明:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

记函数fn(x)=a·xn-1(a∈R,n∈N*)的导函数为f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)设函数gn(x)=fn(x)-n2ln x,试问:是否存在正整数n使得函数gn(x)有且只有一个零点?若存在,请求出所有n的值;若不存在,请说明理由;
(3)若实数x0和m(m>0且m≠1)满足,试比较x0与m的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3-4x2+5x-4.
(1)求曲线f(x)在点(2,f(2))处的切线方程;
(2)求经过点A(2,-2)的曲线f(x)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数R),为其导函数,且有极小值
(1)求的单调递减区间;
(2)若,当时,对于任意x,的值至少有一个是正数,求实数m的取值范围;
(3)若不等式为正整数)对任意正实数恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
若曲线处的切线与直线平行,求a的值;
时,求的单调区间.

查看答案和解析>>

同步练习册答案