精英家教网 > 高中数学 > 题目详情

,函数
(1)若x=2是函数的极值点,求的值;
(2)设函数,若≤0对一切都成立,求的取值范围.

(1);(2)的取值范围是.

解析试题分析:(1)由,可知,根据条件是函数的极值点,可得,从而解得,经检验,当时,的极值点,∴;(2)可将不等式变形为,从而问题等价于,当,求,令,可证上单调递减,故,从而可以得到的取值范围是
(1).
是函数的极值点,所以,即.
经验证,当时,的极值点,∴.        5分;
(2)由题设,.
对一切都成立,
对一切都成立.            7分
,,则
,可知上单调递减,
, 故的取值范围是          10分.
考点:1.利用导数判断函数单调性求极值;2.恒成立问题的处理方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是函数的一个极值点,其中.
(1)的关系式;
(2)求的单调区间;
(3)当时,函数的图象上任意一点处的切线的斜率恒大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为自然对数的底数。
(Ⅰ)设是函数的导函数,求函数在区间上的最小值;
(Ⅱ)若,函数在区间内有零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
上的最大值和最小值分别记为,求
恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求下列函数的导数:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若曲线在点处的切线方程为,求函数的解析式;
(2)讨论函数的单调性;
(3)若对于任意的,不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)当a≠时,求函数y=f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln x+2x,g(x)=a(x2+x).
(1)若a=,求F(x)=f(x)-g(x)的单调区间;
(2)若f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案