精英家教网 > 高中数学 > 题目详情
16.已f(x)=ax3+bx2+cx+d的图象如图所示,则有(  )
A.b<0B.0<b<1C.1<b<2D.b>2

分析 由已知中函数f(x)=ax3+bx2+cx+d的图象,根据其与y轴交点的位置,可以判断d的符号,进而根据其单调性和极值点的位置,可以判断出其中导函数图象的开口方向(可判断a的符号)及对应函数两个根的情况,结合韦达定理,可分析出b,c的符号,进而得到答案.

解答 解:∵函数f(x)=ax3+bx2+cx+d的图象与y轴交点的纵坐标为负,故d<0;
∵f(x)=ax3+bx2+cx+d的图象有两个递增区间,有一个递减区间,
∴f′(x)=3ax2+2bx+c的图象开口方向朝上,且于x轴有两个交点,故a>0,
又∵f(x)=ax3+bx2+cx+d的图象的极小值点和极大值点在y轴右侧,
∴f′(x)=3ax2+2bx+c=0的两根x1,x2满足,
x1+x2>0,则b<0,x1•x2>0,则c>0,
综上a>0,b<0,c>0,d<0,
故选:A.

点评 本题考查的知识点是函数的图象与图象变化,其中根据图象的形状分析其导函数的性质是解答本题的关键,同时由于本题涉及到导数,二次函数的图象和性质,函数的单调性,函数取极值的条件等诸多难点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数F(x)=ex(e=2.71828…)满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数.
(1)求g(x),h(x)的表达式;
(2)若任意x∈[1,2]使得不等式aex-2h(x)≥1恒成立,求实数a的取值范围;
(3)探究h(2x)与2h(x)•g(x)的大小关系,并求$\frac{{2}^{n}g(1)g(2)g({2}^{2})…g({2}^{n-1})}{h({2}^{n})}$(n∈N*)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an}中,a1+a7=36,a3+a9=20.则数列{an}的前9项和为(  )
A.66B.86C.106D.126

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow a=({2,7})$,$\overrightarrow b=({x,-3})$,且$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,则实数x的取值范围为(  )
A.$x<\frac{21}{2}$B.$-\frac{6}{7}<x<\frac{21}{2}$C.$x<\frac{6}{7}$D.$x<\frac{21}{2}$且$x≠-\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解关于x的不等式:a(a-1)x2-(2a-1)x+1>0,其中α∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.奇函数f(x)在区间[1,3]上是单调递减函数,则函数f(x)在区间[-3,-1]上是(  )
A.单调递减函数,且有最小值-f(1)B.单调递减函数,且有最大值-f(1)
C.单调递增函数,且有最小值f(1)D.单调递增函数,且有最大值f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.为灾区儿童献爱心活动中,某校26个班级捐款数统计如下表,则捐款数众数是(  )
捐款数/元350360370380390400410
班级个数/个3169421
A.370元B.380元C.390元D.410元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(-$\sqrt{3}$,x),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=\frac{2}{x}-kx+5lnx-2n(n∈{N^*},k∈R)$的一个极值点2,
(1)求函数f(x)在点(1,f(1))处的切线l的方程;
(2)若数列{an}满足a3=15,且对任意的n∈N*且n≥2,点(an,an-1)均在切线l上,证明:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<\frac{3}{4}$.

查看答案和解析>>

同步练习册答案