精英家教网 > 高中数学 > 题目详情

【题目】直角坐标系xoy中,椭圆的离心率为过点.

(1)求椭圆C的方程;

(2)已知点P(2,1),直线与椭圆C相交于A,B两点,且线段AB被直线OP平分.

①求直线的斜率②若,求直线的方程.

【答案】(1) .

(2) ①直线的斜率为除以外的任意实数.

.

【解析】分析:(1)由离心率条件得,然后将点.代入原式得到第二个方程联立求解即可;(2)①先得出OP的方程,然后根据点差法研究即可;②先表示出,然后联立直线和椭圆根据韦达定理代入等式求解即可.

详解:

(1)由可得

设椭圆方程为,代入点,得

故椭圆方程为:.

(2)①由条件知

,则满足

两式作差得:

化简得

因为平分,故

即直线不过原点时,,所以

即直线过原点时,为任意实数,重合;

综上即直线的斜率为除以外的任意实数.

②当时,,故

,联立,得,舍去;

时,设直线,代入椭圆方程可得,(#)

所以

解得,此时方程(#)中

故所求直线方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为,两个顶点分别为.过点的直线交椭圆于两点,直线的交点为

(1)求椭圆的标准方程;

(2)求证:点在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y= 的部分图象大致为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程选讲]
在直角坐标系xOy中,曲线C的参数方程为 (θ为参数),直线l的参数方程为 (t为参数).(10分)
(1)若a=﹣1,求C与l的交点坐标;
(2)若C上的点到l距离的最大值为 ,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 ,点的左焦点,点上位于第一象限内的点,关于原点的对称点为,则的离心率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 ,点的左焦点,点上位于第一象限内的点,关于原点的对称点为,则的离心率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设O为坐标原点,动点M在椭圆C: +y2=1上,过M做x轴的垂线,垂足为N,点P满足 =
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点Q在直线x=﹣3上,且 =1.证明:过点P且垂直于OQ的直线l过C的左焦点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax.
(1)若函数f(x)在x=3处取得极值,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若a> ,函数y=f(x)在[0,2a]上的最小值是﹣a2 , 求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,是真命题的是(
A.?x0∈R,使得e ≤0
B.
C.?x∈R,2x>x2
D.a>1,b>1是ab>1的充分不必要条件

查看答案和解析>>

同步练习册答案