精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知椭圆的离心率为,两个顶点分别为.过点的直线交椭圆于两点,直线的交点为

(1)求椭圆的标准方程;

(2)求证:点在一条定直线上.

【答案】(1);(2)见解析

【解析】

(1)由已知得a=2.e==,由此能求出a,b

(2)设直线A1M的方程为y=k1(x+2),直线A2N的方程为y=k2(x﹣2).联立方程组,得点M的坐标为(),同理,点N().由M,D,N三点共线,得k2=3k1,由此能证明点G恒在定直线x=4上.

(1)由椭圆两个顶点分别为题设可知

因为,即,所以

又因为,所以

所以,所求的椭圆的标准方程为.

(2)由题意知,直线与直线的斜率存在,故设直线的方程为,直线的方程为

联立方程组,消去y

解得点.同理,解得点.

MDN三点共线,有,化简得

由题设可知同号,所以

联立方程组,解得交点.将代入点G的横坐标,

.所以,点G恒在定直线上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线x2=y,点A(﹣ ),B( ),抛物线上的点P(x,y)(﹣ <x< ),过点B作直线AP的垂线,垂足为Q.
(Ⅰ)求直线AP斜率的取值范围;
(Ⅱ)求|PA||PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)
(Ⅰ)求b关于a的函数关系式,并写出定义域;
(Ⅱ)证明:b2>3a;
(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣ ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设O为坐标原点,动点M在椭圆C: +y2=1上,过M做x轴的垂线,垂足为N,点P满足 =
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点Q在直线x=﹣3上,且 =1.证明:过点P且垂直于OQ的直线l过C的左焦点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.
(Ⅰ)M为曲线C1上的动点,点P在线段OM上,且满足|OM||OP|=16,求点P的轨迹C2的直角坐标方程;
(Ⅱ)设点A的极坐标为(2, ),点B在曲线C2上,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1:y=cosx,C2:y=sin(2x+ ),则下面结论正确的是(  )
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,∠C=,AC=BC,M、N分别是BC、AB的中点,将BMN沿直线MN折起,使二面角B′﹣MN﹣B的大小为,则B'N与平面ABC所成角的正切值是(   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.

求:(1)求圆的方程;

2)设直线与圆相交于两点,求实数的取值范围;

3)在(2)的条件下,是否存在实数,使得过点的直线垂直平分弦

若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系xoy中,椭圆的离心率为过点.

(1)求椭圆C的方程;

(2)已知点P(2,1),直线与椭圆C相交于A,B两点,且线段AB被直线OP平分.

①求直线的斜率②若,求直线的方程.

查看答案和解析>>

同步练习册答案