精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.
(Ⅰ)M为曲线C1上的动点,点P在线段OM上,且满足|OM||OP|=16,求点P的轨迹C2的直角坐标方程;
(Ⅱ)设点A的极坐标为(2, ),点B在曲线C2上,求△OAB面积的最大值.

【答案】解:(Ⅰ)曲线C1的直角坐标方程为:x=4,
设P(x,y),M(4,y0),则 ,∴y0=
∵|OM||OP|=16,
=16,
即(x2+y2)(1+ )=16,
整理得:(x﹣2)2+y2=4(x≠0),
∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).
(Ⅱ)点A的直角坐标为A(1, ),显然点A在曲线C2上,|OA|=2,
∴曲线C2的圆心(2,0)到弦OA的距离d= =
∴△AOB的最大面积S= |OA|(2+ )=2+
【解析】(Ⅰ)设P(x,y),利用相似得出M点坐标,根据|OM||OP|=16列方程化简即可;
(Ⅱ)求出曲线C2的圆心和半径,得出B到OA的最大距离,即可得出最大面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).
(Ⅰ)求f( )的值.
(Ⅱ)求f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10 cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(Ⅰ)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(Ⅱ)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为有公共焦点的椭圆与双曲线的一个交点,且若椭圆的离心率为,双曲线的离心率为的最小值为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,右顶点为点

(1)若直线与椭圆相交于点两点(不是左、右顶点),且,求证:直线过定点,并求出该定点的坐标;

(2)是椭圆的两个动点,若直线的斜率与的斜率互为相反数,试判断直线EF的斜率是否为定值?如果是,求出定值;反之,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为,两个顶点分别为.过点的直线交椭圆于两点,直线的交点为

(1)求椭圆的标准方程;

(2)求证:点在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆为抛物线上的动点,过点作圆的两条切线与轴交于

(1)若,求过点的圆的切线方程;

(2)若,求△面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中,是角的对边则其中真命题的序号是__________.

,则上是增函数;

,则是直角三角形;

的最小值为

,则

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 ,点的左焦点,点上位于第一象限内的点,关于原点的对称点为,则的离心率为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案