ÉèA(xA,yA)£¬B(xB,yB)ΪƽÃæÖ±½Ç×ø±êϵÉϵÄÁ½µã,ÆäÖÐxA,yA,xB,yBÎZ.Áî¡÷x=xB-xA£¬¡÷y=yB-yA,Èô|¡÷x|+|¡÷y|=3£¬ÇÒ|¡÷x|¡¤|¡÷y|¡Ù0,Ôò³ÆµãBΪµãAµÄ¡°Ïà¹Øµã¡±,¼Ç×÷£ºB=f(A).
(1)ÇëÎÊ:µã(0,0)µÄ¡°Ïà¹Øµã¡±Óм¸¸ö?ÅжÏÕâЩµãÊÇ·ñÔÚͬһ¸öÔ²ÉÏ,ÈôÔÚ,д³öÔ²µÄ·½³Ì£»Èô²»ÔÚ£¬ËµÃ÷ÀíÓÉ£»
(2)ÒÑÖªµãH(9,3),L(5,3),ÈôµãMÂú×ãM=f(H),L=f(M),ÇóµãMµÄ×ø±ê£»
(3)ÒÑÖªP0(x0,y0)(x0ÎZ,y0ÎZ)Ϊһ¸ö¶¨µã, ÈôµãPiÂú×ãPi=f (Pi-1),ÆäÖÐi=1,2,3,¡¤¡¤¡¤,n£¬Çó|P0Pn|µÄ×îСֵ£®
£¨1£©x²+y²=5
£¨2£©M(7,2)»òM(7,4).
£¨3£©µ±Ê±, |P0Pn|µÄ×îСֵΪ;
µ±n=2k,kÎN *ʱ, |P0Pn|µÄ×îСֵΪ0£»
µ±n=2k+1,kÎN *ʱ, |P0Pn|µÄ×îСֵΪ1.

ÊÔÌâ·ÖÎö£º½â: (1)ÒòΪ|¡÷x|+|¡÷y|=3(|¡÷x|,|¡÷y|Ϊ·ÇÁãÕûÊý),
¹Ê|¡÷x|=1,|¡÷y|=2»ò|¡÷x|=2,|¡÷y|=1,ËùÒÔµã(0,0)µÄ¡°Ïà¹Øµã¡±ÓÐ8¸ö .
ÓÖÒòΪ(¡÷x)²+(¡÷y)²=5,¼´(¡÷x-0)²+(¡÷y-0)²="5" .
ËùÒÔÕâЩ¿ÉÄÜÖµ¶ÔÓ¦µÄµãÔÚÒÔ(0,0)ΪԲÐÄ,Ϊ°ë¾¶µÄÔ²ÉÏ£¬
·½³ÌΪx²+y²="5" .                     3·Ö
(2)ÉèM(xM,yM),
ÒòΪM=f(H),L=f(M),
ËùÒÔÓÐ|xM-9|+|yM-3|="3," |xM-5|+|yM-3|=3,
ËùÒÔ|xM-9|=|xM-5|,ËùÒÔxM=7, yM=2»òyM=4,
ËùÒÔM(7,2)»òM(7,4).                6·Ö
(3) µ±n=1ʱ,¿ÉÖª|P0Pn|µÄ×îСֵΪ;
µ±n=2k,kÎN *ʱ, |P0Pn|µÄ×îСֵΪ0 ;
µ±n=3ʱ,¶ÔÓÚµãP,°´ÕÕÏÂÃæµÄ·½·¨Ñ¡Ôñ¡°Ïà¹Øµã¡±,¿ÉµÃP3(x0,y0+1):
P0(x0,y0)¡úP1(x0+2,y0+1)¡úP2(x0+1,y0+3) ¡úP3(x0,y0+1)
¹Ê|P0Pn|µÄ×îСֵΪ1,
µ±n=2k+3, kÎN *ʱ,¶ÔÓÚµãP,¾­¹ý2k´Î±ä»»»Øµ½³õʼµãP0(x0,y0),È»ºó¾­¹ý3´Î±ä»»»Øµ½Pn(x0,y0+1),¹Ê|P0Pn|µÄ×îСֵΪ1.
×ÛÉÏ,µ±Ê±, |P0Pn|µÄ×îСֵΪ;
µ±n=2k,kÎN *ʱ, |P0Pn|µÄ×îСֵΪ0£»
µ±n=2k+1,kÎN *ʱ, |P0Pn|µÄ×îСֵΪ1.         10·Ö
µãÆÀ£ºÖ÷ÒªÊÇ¿¼²éÁËÔ²µÄ·½³ÌµÄÇó½â£¬ÒÔ¼°Á½µã¾àÀëµÄ×îÖµ£¬ÊôÓÚÖеµÌâ¡£
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Çóͨ¹ýÁ½ÌõÖ±Ïߺ͵Ľ»µã£¬ÇÒ¾àÔ­µã¾àÀëΪ1µÄÖ±Ïß·½³Ì¡£

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

¹ýµã(£­1,3)ÇÒ´¹Ö±ÓÚÖ±Ïßx£­2y£«3£½0µÄÖ±Ïß·½³ÌÊÇ(¡¡¡¡)
A£®x£­2y£«7£½0B£®2x£«y£­1£½0
C£®x£­2y£­5£½0D£®2x£«y£­5£½0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

¿Õ¼äÖУ¬´¹Ö±ÓÚͬһÌõÖ±ÏßµÄÁ½ÌõÖ±ÏßµÄλÖùØϵÊÇ£¨    £©
A£®Æ½ÐÐB£®ÏཻC£®ÒìÃæD£®ÒÔÉ϶¼ÓпÉÄÜ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

¹ýµãP(1, 4)µÄÖ±ÏßlÓëÁ½×ø±êÖáÕý°ëÖáÏཻ£¬µ±Ö±ÏßlÔÚÁ½×ø±êÖáÉϵĽؾàÖ®ºÍ×îСʱ£¬Ö±ÏßlµÄ·½³ÌÊÇ____________________

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÖ±Ïß¹ýµã£®
£¨1£©µ±Ö±ÏßÓëµã¡¢µÄ¾àÀëÏàµÈʱ£¬ÇóÖ±Ïߵķ½³Ì£»
£¨2£©µ±Ö±ÏßÓëÖá¡¢ÖáΧ³ÉµÄÈý½ÇÐεÄÃæ»ýΪʱ£¬ÇóÖ±Ïߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

(1) ÒÑÖªÖ±Ïß(a£«2)x+(1£­a)y£­3="0" ºÍÖ±Ïß(a£­1)x £«(2a£«3)y£«2="0" »¥Ïà´¹Ö±.ÇóaÖµ
(2) Çó¾­¹ýµã²¢ÇÒÔÚÁ½¸ö×ø±êÖáÉϵĽؾàµÄ¾ø¶ÔÖµÏàµÈµÄÖ±Ïß·½³Ì

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÖ±ÏߣººÍµã£¨1,2£©£®Éè¹ýµãÓë´¹Ö±µÄÖ±ÏßΪ.
£¨1£©ÇóÖ±Ïߵķ½³Ì£»
£¨2£©ÇóÖ±ÏßÓëÁ½×ø±êÖáΧ³ÉµÄÈý½ÇÐεÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÈôÖ±Ïßmx+y-1=0ÓëÖ±Ïßx-2y+3=0ƽÐУ¬ÔòmµÄֵΪ
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸