精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当时,若存在,使得,求实数的取值范围;

(2)若为正整数,方程的两个实数根满足,求的最小值.

【答案】1211

【解析】试题分析:(1)存在,使得等价于上有两个不等实根,或上有两个不等实根,结合二次函数的顶点在直线下方或上方列不等式组求解即可;(2)利用一元二次方程方程根的分别,列不等式组,根据为正整数,先初步判断的范围,再利用分类讨论思想求解即可.

试题解析:1时,

由题意可知, 上有两个不等实根,或上有两个不等实根,则,

解得

即实数的取值范围是.

(2)设,则由题意得,即

所以,由于

时, ,且无解,

时, ,且,于是无解,

时, ,且,由,得,此时有解

综上所述, ,当时取等号,即的最小值为11

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列 满足,且当时, ,令

)写出的所有可能的值.

)求的最大值.

)是否存在数列,使得?若存在,求出数列;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修45:不等式选讲

已知函数

1)当时,求不等式的解集;

2)若函数的值域为的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,过动点A,垂足D在线段BC上且异于点B,连接AB,沿折起,使(如图2所示).

1)当的长为多少时,三棱锥的体积最大;

2)当三棱锥的体积最大时,设点分别为棱的中点,试在棱上确定一点,使得 ,并求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数,向量 ,经过点,以为方向向量的直线与经过点,以为方向向量的直线交于点,其中

)求点的轨迹方程,并指出轨迹

)若点,当时, 为轨迹上任意一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若存在极值点1,求的值;

(2)若存在两个不同的零点,求证: 为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两神坐标系中的长度单位相同.已知曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)在曲线上求一点,使它到直线 为参数)的距离最短,写出点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列是首项与公比均为的等比数列(,且),数列满足

1)求数列的前项和

2)若对一切都有,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长为4,焦距为

求椭圆的方程;

过动点的直线交轴与点,交于点 (在第一象限),且是线段的中点.过点轴的垂线交于另一点,延长于点.

设直线的斜率分别为,证明为定值;

求直线的斜率的最小值.

查看答案和解析>>

同步练习册答案