【题目】已知函数.
(1)当时,若存在,使得,求实数的取值范围;
(2)若为正整数,方程的两个实数根满足,求的最小值.
科目:高中数学 来源: 题型:
【题目】已知数列, , , 满足,且当时, ,令.
(Ⅰ)写出的所有可能的值.
(Ⅱ)求的最大值.
(Ⅲ)是否存在数列,使得?若存在,求出数列;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1, , ,过动点A作,垂足D在线段BC上且异于点B,连接AB,沿将△折起,使(如图2所示).
(1)当的长为多少时,三棱锥的体积最大;
(2)当三棱锥的体积最大时,设点, 分别为棱, 的中点,试在棱上确定一点,使得 ,并求与平面所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知常数,向量, ,经过点,以为方向向量的直线与经过点,以为方向向量的直线交于点,其中.
()求点的轨迹方程,并指出轨迹.
()若点,当时, 为轨迹上任意一点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两神坐标系中的长度单位相同.已知曲线的极坐标方程为, .
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)在曲线上求一点,使它到直线: (为参数)的距离最短,写出点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的长轴长为4,焦距为
(Ⅰ)求椭圆的方程;
(Ⅱ)过动点的直线交轴与点,交于点 (在第一象限),且是线段的中点.过点作轴的垂线交于另一点,延长交于点.
(ⅰ)设直线的斜率分别为,证明为定值;
(ⅱ)求直线的斜率的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com