精英家教网 > 高中数学 > 题目详情
1.下列命题中假命题是(  )
A.?x,y∈R,使sin(x+y)=sinx+siny成立
B.?x∈R,使(x-1)2≤0成立
C.“x+y>2且xy>1”成立的充要条件是x>1且y>1
D.?x∈R,使2x2-2x+1>0成立

分析 A举例说明x=0,y∈R时,sin(0+y)=sin0+siny成立;
B举例说明x=1时,(1-1)2≤0成立;
C判断充分性成立,必要性不成立,不是充要条件;
D由2x2-2x+1=2${(x-\frac{1}{2})}^{2}$+$\frac{1}{2}$>0恒成立判断即可.

解答 解:对于A,当x=0,y∈R时,使sin(0+y)=sin0+siny成立,∴A正确;
对于B,x=1时,(1-1)2≤0成立,∴B正确;
对于C,x>1且y>1时,x+y>2且xy>1成立,充分性成立,
x+y>2且xy>1时,x>1且y>1不一定成立,如x=4,y=$\frac{1}{2}$时,
∴必要性不成立,不是充要条件,C错误;
对于D,由2x2-2x+1=2${(x-\frac{1}{2})}^{2}$+$\frac{1}{2}$>0,∴D正确.
故选:C.

点评 本题考查了命题真假的判断问题,也考查了特称命题与全称命题以及充分必要条件的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设函数f'(x)=x2+3x-4,则y=f(x-1)的单调减区间(-3,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若当x=$\frac{π}{6}$时,函数f(x)=sinx+acosx取到最大值,则f(-$\frac{π}{12}$)=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=loga(x+b),g(x)=kx(k∈R且k≠0),若y=f(x)在点(1,f(1))处的切线方程为x-y-1=0.
(Ⅰ)求a,b的值;
(Ⅱ)若函数y=f(x)与y=g(x)的图象无公共点,试求实数k的取值范围;
(Ⅲ)若存在两个实数x1、x2且x1≠x2,满足f(x1)=g(x1),f(x2)=g(x2),求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设两个非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:($\sqrt{2}$$\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$,且集合A={x|x2+(|$\overrightarrow{a}$|+|$\overrightarrow{b}$|)x+|$\overrightarrow{a}$||$\overrightarrow{b}$|=0}是单元素集合,则<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=asin2x-cos2x+sin2x过点($\frac{π}{6}$,1).
(1)求a的值,并写出f(x)的单调递增区间;
(2)若α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),f($\frac{α+β}{2}$+$\frac{π}{3}$)=$\frac{6}{5}$,f(β+$\frac{π}{3}$)=$\frac{8}{5}$,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数f(x)=xlnx-a(x-1)2-x,g(x)=lnx-2a(x-1),其中常数a∈R.
(Ⅰ)讨论g(x)的单调性;
(Ⅱ)当a>0时,若f(x)有两个零点x1,x2(x1<x2),求证:在区间(1,+∞)上存在f(x)的极值点x0,使得x0lnx0+lnx0-2x0>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.平面α内有一以AB为直径的圆,PA⊥α,点C在圆周上移动(不与A,B重合),点D,E分别是A在PC,PB上的射影,则(  )
A.∠ACD是二面角A-PC-B的平面角B.∠AED是二面角A-PB-C的平面角
C.∠EDA是二面角A-PC-B的平面角D.∠DAE是二面角B-PA-C的平面角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设p:(4x-1)2<1,q:x2-(2a+1)x+a(a+1)≤0,若非p是非q的必要而不充分条件,则实数a的取值范围为$[{-\frac{1}{2},0}]$.

查看答案和解析>>

同步练习册答案