精英家教网 > 高中数学 > 题目详情
10.平面α内有一以AB为直径的圆,PA⊥α,点C在圆周上移动(不与A,B重合),点D,E分别是A在PC,PB上的射影,则(  )
A.∠ACD是二面角A-PC-B的平面角B.∠AED是二面角A-PB-C的平面角
C.∠EDA是二面角A-PC-B的平面角D.∠DAE是二面角B-PA-C的平面角

分析 利用射影的定义、直径所对的圆周角为直角等知识判定线线垂直,AE⊥PB,AD⊥PC,BC⊥AC.然后利用线线垂直、线面垂直、面面垂直的相互转化关系判定即可.

解答 解:∵PA⊥⊙O所在平面α,BC?α,
∴PA⊥BC,
∵AB是⊙O的直径,
∴BC⊥AC,
∵PA∩AC=A,
∴BC⊥平面PAC,
∴AD⊥BC,
又∵D是点A在PC上的射影,
∴AD⊥PC,
∵BC∩PC=C,
∴AD⊥平面PBC,
∴AD⊥PB,
又∵AE⊥PB,AD∩AE=A
∴PB⊥面ADE,
∴∠AED是二面角A-PB-C的平面角.
故选:B.

点评 本题考查二面角的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在空间直角坐标系Oxyz中,点A(a,a,a),B(a,a,0),C(0,0,a).其中a>0,则△ABC为(  )
A.直角三角形B.等腰直角三角形C.正三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中假命题是(  )
A.?x,y∈R,使sin(x+y)=sinx+siny成立
B.?x∈R,使(x-1)2≤0成立
C.“x+y>2且xy>1”成立的充要条件是x>1且y>1
D.?x∈R,使2x2-2x+1>0成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=2x2-mx+3在(-2,+∞)上单调递增,在(-∞,-2]上单调递减,则f(1)=13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,内角A,B,C的对边分别为a,b,c且a2=b2+c2+bc,则A=(  )
A.$\frac{2π}{3}$B.$\frac{5π}{6}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的首项a1=1,前n项和为Sn,且满足(n+1)an=2Sn(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=ancos(πan),求数列{bn)的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{c}$=2$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{d}$=k$\overrightarrow{a}$-$\overrightarrow{b}$,且$\overrightarrow{c}$⊥$\overrightarrow{d}$,则k=(  )
A.-bB.bC.-$\frac{14}{5}$D.$\frac{14}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若$f(x)=\frac{x}{x+1}$,f1(x)=f(x),${f_n}(x)={f_{n-1}}[{f(x)}]({n≥2,n∈{N^*}})$,则f(1)+f(2)+…f(2015)+f1(1)+f2(1)+f3(1)+…f2015(1)的值为(  )
A.2014B.2015C.4028D.4030

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2cos2$\frac{x}{2}$,g(x)=(sin$\frac{x}{2}$+cos$\frac{x}{2}$)2
(1)求证:f($\frac{π}{2}$-x)=g(x);
(2)求函数h(x)=f(x)-g(x)(x∈[0,π])的单调区间,并求使h(x)取到最小值时x的值.

查看答案和解析>>

同步练习册答案