【题目】已知函数
,
且
.
(1)若函数
在
上恒有意义,求
的取值范围;
(2)是否存在实数
,使函数
在区间
上为增函数,且最大值为
?若存在求出
的值,若不存在请说明理由.
【答案】(1)
;(2)
.
【解析】
(1)根据
在
上恒有意义,则
在
上恒成立.讨论对称轴的位置,即可求得
的取值范围.
(2)讨论
与
两种情况,结合复函函数单调性即可判断是否符合单调递增.再根据最大值为
,代入
的值,解方程即可求解.
(1)函数
在
上恒有意义
即
在
上恒成立
令![]()
对称轴为
,开口向上
当
时,只需
,即
,解得
,所以![]()
当
时,只需
,即
,解得
,所以![]()
当
时, 只需
,即
,解得
,所以![]()
综上可知,
的取值范围为![]()
(2)函数
对称轴为
由复合函数单调性的性质可知:
当
时
为单调递减函数,
在
上为单调递增函数,所以
在
上单调递减,不合题意
当
时,
为单调递增函数, 若
在
上单调递增,则
在
上为单调递增函数.
所以由对称轴在
左侧可得![]()
因为最大值为2,则![]()
即![]()
即
,化简可得
解得
或 ![]()
因为![]()
所以![]()
当
函数
在区间
上为增函数,且最大值为![]()
科目:高中数学 来源: 题型:
【题目】为了解学生喜欢校内、校外开展活动的情况,某中学一课外活动小组在学校高一年级进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按
,
,
,
,
分成五组,绘制的频率分布直方图如图所示,若将不低于60分的称为
类学生,低于60分的称为
类学生.
![]()
(1)根据已知条件完成下面
列联表,能否在犯错误的概率不超过
的前提下认为性别与是否为
类学生有关系?
|
| 合计 | |
男 | 110 | ||
女 | 50 | ||
合计 |
(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中
类学生的人数为
,若每次抽取的结果是相互独立的,求
的分布列、期望
和方差
.
参考公式:
,其中
.
参考临界值:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,侧面
底面
,底面
为直角梯形,其中
,
,
,
,
,
,点
在棱
上且
,点
为棱
的中点.
在棱
上且
,点
位棱
的中点.
(1)证明:平面
平面
;
(2)求二面角
的余弦值的大小.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
.
(1)当
时,求函数
的最大值;
(2)令
,(
)其图象上任意一点
处切线的斜率
恒成立,求实数
的取值范围;
(3)当
,
,方程
有唯一实数解,求正数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一家公司生产某种品牌服装的年固定成本为
万元,每生产
千件需另投入
万元.设该公司一年内共生产该品牌服装
千件并全部销售完,每千件的销售收入为
万元,且
.
(1)写出年利润
(万元)关于年产量
(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为调查该校学生每周参加社会实践活动的情况,随机收集了若干名学生每周参加社会实践活动的时间(单位:小时),将样本数据绘制如图所示的频率分布直方图,且在[0,2)内的学生有1人.
![]()
(1)求样本容量
,并根据频率分布直方图估计该校学生每周参加社会实践活动时间的平均值;
(2)将每周参加社会实践活动时间在[4,12]内定义为“经常参加社会实践”,参加活动时间在[0,4)内定义为“不经常参加社会实践”.已知样本中所有学生都参加了青少年科技创新大赛,有13人成绩等级为“优秀”,其余成绩为“一般”,其中成绩优秀的13人种“经常参加社会实践活动”的有12人.请将2×2列联表补充完整,并判断能否在犯错误的概率不超过0.05的前提下认为青少年科技创新大赛成绩“优秀”与经常参加社会实践活动有关;
(3)在(2)的条件下,如果从样本中“不经常参加社会实践”的学生中随机选取两人参加学校的科技创新班,求其中恰好一人成绩优秀的概率.
参考公式和数据:
.
| 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:
![]()
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为
,求
,并估计
的预报值;
(Ⅱ)现准备勘探新井
,若通过1、3、5、7号井计算出的
的值(
精确到0.01)相比于(Ⅰ)中
的值之差不超过10%,则使用位置最接近的已有旧井
,否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:
)
(Ⅲ)设出油量与勘探深度的比值
不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com