【题目】设函数
.
(1)当
时,求函数
的最大值;
(2)令
,(
)其图象上任意一点
处切线的斜率
恒成立,求实数
的取值范围;
(3)当
,
,方程
有唯一实数解,求正数
的值.
【答案】![]()
(3)因为方程
有唯一实数解,
所以
有唯一实数解,
设
,
则
.令
,
.
因为
,
,所以
(舍去),
,
当
时,
,
在(0,
)上单调递减,
当
时,
,
在(
,+∞)单调递增
当
时,
=0,
取最小值
.(12′)
![]()
【解析】
(1)利用导数求函数的单调区间即得函数的最大值.(2)由题得
,
.再求右边二次函数的最大值即得
.(3)转化为
有唯一实数解,设
,再研究函数在定义域内有唯一的零点得解.
(1)依题意,知
的定义域为
,
当
时,
,
,
令
,解得
.(∵
)
因为
有唯一解,所以
,当
时,
,此时
单调递增;
当
时,
,此时
单调递减,
所以
的极大值为
,此即为最大值.
(2)
,
,则有
,在
上恒成立,
所以
,
.
当
时,
取得最大值
,所以
.
(3)因为方程
有唯一实数解,
所以
有唯一实数解,
设
,
则
,令
,
,
因为
,
,所以
(舍去),
,
当
时,
,
在
上单调递减;
当
时,
,
在
上单调递增;
当
时,
,
取最小值
.
则
,即
,
所以
,因为
,所以
(*)
设函数
,因为当
时,
是增函数,所以
至多有一解,
因为
,所以方程(*)的解为
,即
,解得
.
科目:高中数学 来源: 题型:
【题目】某高中尝试进行课堂改革.现高一有
两个成绩相当的班级,其中
班级参与改革,
班级没有参与改革.经过一段时间,对学生学习效果进行检测,规定成绩提高超过
分的为进步明显,得到如下列联表.
进步明显 | 进步不明显 | 合计 | |
|
|
|
|
|
|
|
|
合计 |
|
|
|
(1)是否有
的把握认为成绩进步是否明显与课堂是否改革有关?
(2)按照分层抽样的方式从
班中进步明显的学生中抽取
人做进一步调查,然后从
人中抽
人进行座谈,求这
人来自不同班级的概率.
附:
,当
时,有
的把握说事件
与
有关.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是定义在
上的偶函数,当
时,
.
(1)直接写出函数
的增区间(不需要证明);
(2)求出函数
,
的解析式;
(3)若函数
,
,求函数
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地拟规划种植一批芍药,为了美观,将种植区域(区域I)设计成半径为1km的扇形
,中心角
(
).为方便观赏,增加收入,在种植区域外围规划观赏区(区域II)和休闲区(区域III),并将外围区域按如图所示的方案扩建成正方形
,其中点
,
分别在边
和
上.已知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.
(1)要使观赏区的年收入不低于5万元,求
的最大值;
(2)试问:当
为多少时,年总收入最大?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
且
.
(1)若函数
在
上恒有意义,求
的取值范围;
(2)是否存在实数
,使函数
在区间
上为增函数,且最大值为
?若存在求出
的值,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
是指大气中空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国
标准采用世界卫生组织设定的最宽限值,即
日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某城市环保局从该市市区2017年上半年每天的
监测数据中随机抽取18天的数据作为样本,将监测值绘制成茎叶图如下图所示(十位为茎,个位为叶).
![]()
(1)求这18个数据中不超标数据的平均数与方差;
(2)在空气质量为一级的数据中,随机抽取2个数据,求其中恰有一个为
日均值小于30微克/立方米的数据的概率;
(3)以这
天的
日均值来估计一年的空气质量情况,则一年(按
天计算)中约有多少天的空气质量超标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com