分析 (1)通过等比中项可知a4=16,从而公比q=$\sqrt{\frac{{a}_{4}}{{a}_{2}}}$=2,进而可得结论;
(2)通过(1)可知log2an=n,利用等差数列的求和公式可知bn=$\frac{n(n+1)}{2}$,裂项可知$\frac{1}{{b}_{n}}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),并项相加即得结论.
解答 解:(1)依题意,a3•a5=${{a}_{4}}^{2}$=256,
∴a4=16或a4=-16(舍),
∴公比q=$\sqrt{\frac{{a}_{4}}{{a}_{2}}}$=2,
∴数列{an}的通项公式an=a2•qn-2=4•2n-2=2n;
(2)由(1)可知,log2an=log22n=n,
∴bn=log2a1+log2a2+…+log2an
=1+2+…+n
=$\frac{n(n+1)}{2}$,
∴$\frac{1}{{b}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Sn=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=2(1-$\frac{1}{n+1}$),
=$\frac{2n}{n+1}$.
点评 本题考查数列的通项及前n项和,考查运算求解能力,利用裂项相消法是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 0 | C. | -2 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 年收入平均数大大增大,中位数一定变大,方差可能不变 | |
| B. | 年收入平均数大大增大,中位数可能不变,方差变大 | |
| C. | 年收入平均数大大增大,中位数可能不变,方差也不变 | |
| D. | 年收入平均数可能不变,中位数可能不变,方差可能不变 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com