精英家教网 > 高中数学 > 题目详情
10.已知a,y满足$\left\{\begin{array}{l}{x-2≤0}\\{x-2y≤0}\\{x+2y-8≤0}\end{array}\right.$,则目标函数z=2x+y的最大值为(  )
A.6B.7C.8D.9

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-2≤0}\\{x-2y≤0}\\{x+2y-8≤0}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x=2}\\{x+2y-8=0}\end{array}\right.$,解得A(2,3),
化目标函数z=2x+y为y=-2x+z,
由图可知,当直线y=-2x+z过A时,直线在y轴上的截距最大,z有最大值为2×2+3=7.
故选:B.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在△ABC中,sinA,sinB,sinC成等比数列,b=2,则a+c(  )
A.有最小值4B.有最大值4C.有最小值2D.有最大值2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,cos2A-3cos(B+C)=1,△ABC的面积为$5\sqrt{3},b=5$,则sinBsinC=$\frac{5}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知两个单位向量$\overrightarrow a,\overrightarrow b$的夹角为60°,$\overrightarrow c=t\overrightarrow a+\overrightarrow b$,$\overrightarrow d=\overrightarrow a-t\overrightarrow b$,若$\overrightarrow c⊥\overrightarrow d$,则正实数t=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x>2}\\{lo{g}_{\frac{1}{2}}(\frac{9}{4}-x)+{a}^{2},x≤2}\end{array}\right.$,若f(x)的值域为R,则实数a的取值范围是(  )
A.(-∞,-1]∪[2,+∞)B.[-1,2]C.(-∞,-2]∪[1,+∞)D.[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知侧棱垂直底面的三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,点D是AB的中点.
(1)求证:AC⊥BC;
(2)求证:AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1}{2}$sinωx+$\frac{\sqrt{3}}{2}$cosωx(ω>0)的周期为π.
(Ⅰ)求ω的值,并在下面提供的坐标系中画出函数y=f(x)在区间[0,π]上的图象;
(Ⅱ)函数y=f(x)的图象可由函数y=sinx的图象经过怎样的变换得到.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若实数x,y,z满足x2+y2+z2=1.
(1)若x+y+z=0,求yz的最小值;
(2)求证:-$\frac{1}{2}$≤xy+yz+zx≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={x|x2+4x<0},集合B={n|n=2k-1,k∈Z},则A∩B=(  )
A.{-1,1}B.{1,3}C.{-3,-1}D.{-3,-1,1,3}

查看答案和解析>>

同步练习册答案