分析 (1)利用勾股定理能证明AC⊥BC.
(2)以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能证明AC1∥平面CDB1.
解答 证明:(1)∵AC=3,AB=5,BC=4
∴AC2+BC2=AB2,
∴AC⊥BC.
(2)以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,![]()
设CC1=t,则由题意得A(3,0,0),C1(0,0,t),C(0,0,0),
B(0,4,0),D($\frac{3}{2}$,2,0),B1(0,4,t),
$\overrightarrow{CD}$=($\frac{3}{2},2,0$),$\overrightarrow{C{B}_{1}}$=(0,4,t),$\overrightarrow{A{C}_{1}}$=(-3,0,t),
设平面CDB1的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CD}=\frac{3}{2}x+2y=0}\\{\overrightarrow{n}•\overrightarrow{C{B}_{1}}=4y+tz=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(4,-3,$\frac{12}{t}$),
∴$\overrightarrow{A{C}_{1}}•\overrightarrow{n}$=0,
∵AC1?平面CDB1,∴AC1∥平面CDB1.
点评 本题考查两直线垂直的证明,考查线面平行的证明,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 83 | B. | 63 | C. | 57 | D. | 23 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com