精英家教网 > 高中数学 > 题目详情
3.已知向量$\overrightarrow a=(-4,3)$,$\overrightarrow b=(5,6)$,则3|$\overrightarrow a{|^2}$$-4\overrightarrow a•\overrightarrow b$=(  )
A.83B.63C.57D.23

分析 直接利用数量积的坐标运算得答案.

解答 解:∵$\overrightarrow a=(-4,3)$,$\overrightarrow b=(5,6)$,
∴$|\overrightarrow{a}|=\sqrt{(-4)^{2}+{3}^{2}}=5$,$\overrightarrow{a}•\overrightarrow{b}=(-4,3)•(5,6)=-4×5+3×6=-2$,
∴$3|\overrightarrow{a}{|}^{2}-4\overrightarrow{a}•\overrightarrow{b}=3×25-4×(-2)=83$.
故选:A.

点评 本题考查平面向量的数量积运算,考查了数量积的坐标表示,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知数列{an}中,an=an2-n,且{an}是递增数列,实数a的取值范围$a>\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.高考在即,某学校对2016届高三学生进行考前心理辅导,在高三甲班50名学生中,男生有30人,女生有20人,抽取5人,恰好2男3女,有下列说法:
(1)男生抽到的概率比女生抽到的概大;(2)一定不是系统抽样;(3)不是分层抽样;(4)每个学生被抽取的概率相同.以上说法正确的是(  )
A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=|x+1|+|x+a|的最小值为1,则实数a的值为0或2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知两个单位向量$\overrightarrow a,\overrightarrow b$的夹角为60°,$\overrightarrow c=t\overrightarrow a+\overrightarrow b$,$\overrightarrow d=\overrightarrow a-t\overrightarrow b$,若$\overrightarrow c⊥\overrightarrow d$,则正实数t=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.正12边形A1A2…A12内接于半径为1的圆,从$\overrightarrow{{A}_{1}{A}_{2}}$、$\overrightarrow{{A}_{2}{A}_{3}}$、$\overrightarrow{{A}_{3}{A}_{4}}$、…、$\overrightarrow{{A}_{12}{A}_{1}}$这12个向量中任取两个,记它们的数量积为S,则S的最大值等于$\sqrt{3}-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知侧棱垂直底面的三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,点D是AB的中点.
(1)求证:AC⊥BC;
(2)求证:AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.$\frac{{{{(x-1)}^6}}}{x}$的展开式中,x2项的系数为-20.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\sqrt{3}$sinxcosx+cos2x+m.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)当x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,函数f(x)的最小值为2,求函数f(x)的最大值及对应的x的值.

查看答案和解析>>

同步练习册答案