精英家教网 > 高中数学 > 题目详情
20.设集合A={x|x2+4x<0},集合B={n|n=2k-1,k∈Z},则A∩B=(  )
A.{-1,1}B.{1,3}C.{-3,-1}D.{-3,-1,1,3}

分析 求出A中不等式的解集确定出A,列举出B中的元素确定出B,找出A与B的交集即可.

解答 解:由A中不等式变形得:x(x+4)<0,
解得:-4<x<0,即A={x|-4<x<0},
∵B={n|n=2k-1,k∈Z}={…,-5,-3,-1,1,…},
∴A∩B={-3,-1},
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知a,y满足$\left\{\begin{array}{l}{x-2≤0}\\{x-2y≤0}\\{x+2y-8≤0}\end{array}\right.$,则目标函数z=2x+y的最大值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某综艺节目固定有3名男嘉宾,2名女嘉宾.现要求从中选取3人组成一个娱乐团队,要求男女嘉宾都有,则不同的组队方案共有多少种(  )
A.9B.15C.18D.21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设x,y满足约束条件$\left\{\begin{array}{l}1≤x≤3\\-1≤x-y≤0\end{array}\right.$,则z=$\frac{y}{x}$的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.i是虚数单位,计算$\frac{1-i}{2+i}$的结果为$\frac{1}{5}-\frac{3}{5}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在冬奥会志愿者活动中,甲、乙等5人报名参加了A,B,C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者,且甲不能参加A,B项目,乙不能参加B,C项目,那么共有21种不同的志愿者分配方案.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2-x-2≤0},B={x|x2-1>0},则A∩B=(  )
A.[-2,1)B.(-1,1)C.(1,2]D.(-2,-1)∪(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=2cos(2x+φ)(|φ|<$\frac{π}{2}$)在区间($\frac{π}{6}$,$\frac{5π}{12}$]上单调,则2sin(φ-$\frac{π}{3}$)的取值范围是(  )
A.(-1,1]B.(-$\sqrt{3}$,1]C.(-2,1]D.[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.计算:$\frac{cos10°-2sin20°}{sin10°}$=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案