【题目】已知等差数列{an}满足: ,且它的前n项和Sn有最大值,则当Sn取到最小正值时,n= .
【答案】19
【解析】解:由题意知,Sn有最大值,所以d<0,
由 ,所以a10>0>a11 ,
且a10+a11<0,
所以S20=10(a1+a20)=10(a10+a11)<0,
则S19=19a10>0,
又a1>a2>…>a10>0>a11>a12
所以S10>S9>…>S2>S1>0,S10>S11>…>S19>0>S20>S21
又S19﹣S1=a2+a3+…+a19=9(a10+a11)<0,
所以S19为最小正值.
所以答案是:19.
【考点精析】解答此题的关键在于理解等差数列的性质的相关知识,掌握在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列.
科目:高中数学 来源: 题型:
【题目】已知坐标平面上点与两个定点, 的距离之比等于5.
(1)求点的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为,过点的直线被所截得的线段的长为8,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各个学校做问卷调查。某中学A,B两个班各被随机抽取5名学生接受问卷调查,A班5名学生得分分别为;5, 8, 9, 9, 9:B班5名学生的得分分别为;6, 7, 8, 9, 10。
(1)请你分析A,B两个班中哪个班的问卷得分要稳定些;
(2)如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(sinx,﹣1), =( cosx,﹣ ),函数f(x)=( ) ﹣2.
(Ⅰ)求函数f(x)的最小正周期T;
(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=2 ,c=4,且f(A)=1,求A,b和△ABC的面积S.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P( ,1),Q(cosx,sinx),O为坐标原点,函数f(x)= .
(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;
(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2),且x∈(﹣1,0)时,f(x)=2x+ ,则f(log220)=( )
A.﹣1
B.
C.1
D.﹣
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布情况,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的小长方形的高之比为1:3:6:4:2,最右边一组频数是6,请结合直方图提供的信息,解答下列问题:
(1)样本的容量是多少?
(2)列出频率分布表;
(3)估计这次竞赛中,成绩高于60分的学生占总人数的百分比;
(4)成绩落在哪个范围内的人数最多?并求出该小组的频数,频率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com