分析 (1)利用A?{x|2<x<3},可得$\left\{\begin{array}{l}{4+4k+6≤0}\\{9+6k+6≤0}\end{array}\right.$,即可求实数k的取值范围;
(2)若A⊆{x|2<x<3},分类讨论,建立不等式,即可求实数k的取值范围.
解答 解:(1)由题意,$\left\{\begin{array}{l}{4+4k+6≤0}\\{9+6k+6≤0}\end{array}\right.$,∴k≤-$\frac{5}{2}$;
(2)A=∅,△=4k2-24≤0,∴-$\sqrt{6}$≤k≤$\sqrt{6}$,满足A⊆{x|2<x<3},;
A≠∅,△>0,k<-$\sqrt{6}$或k$>\sqrt{6}$,
∵A⊆{x|2<x<3},
∴$\left\{\begin{array}{l}{4+4k+6≥0}\\{9+6k+6≥}\end{array}\right.$,∴k≥-$\frac{5}{2}$,
∴k$>\sqrt{6}$,
综上,k≥-$\sqrt{6}$.
点评 本题考查集合的包含关系,考查分类讨论的数学思想,考查学生解不等式的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 三角形 | B. | 梯形 | C. | 菱形 | D. | 平面四边形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com