6£®Èçͼ£¬Õý·½ÐÎABCDµÄ±ß³¤Îª2£¬OΪADµÄÖе㣬ÉäÏßOP´ÓOA³ö·¢£¬ÈÆ×ŵãO˳ʱÕë·½ÏòÐýתÖÁOD£¬ÔÚÐýתµÄ¹ý³ÌÖУ¬¼Ç¡ÏAOPΪx£¨x¡Ê[0£¬¦Ð]£©£¬OPËù¾­¹ýµÄÔÚÕý·½ÐÎABCDÄÚµÄÇøÓò£¨ÒõÓ°²¿·Ö£©µÄÃæ»ýS=f£¨x£©£¬ÄÇô¶ÔÓÚº¯Êýf£¨x£©ÓÐÒÔÏÂÈý¸ö½áÂÛ£¬ÆäÖв»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
¢Ùf£¨$\frac{¦Ð}{3}$£©=$\frac{\sqrt{3}}{2}$
¢Úº¯Êýf£¨x£©ÔÚ£¨$\frac{¦Ð}{2}$£¬¦Ð£©ÉÏΪ¼õº¯Êý
¢ÛÈÎÒâx¡Ê[0£¬$\frac{¦Ð}{2}$]£¬¶¼ÓÐf£¨x£©+f£¨¦Ð-x£©=4£®
A£®¢ÙB£®¢ÛC£®¢ÚD£®¢Ù¢Ú¢Û

·ÖÎö ÓÉͼÐοɵú¯ÊýµÄ½âÎöʽ£¬ÔÙ·Ö±ðÅжϣ¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£ºµ±0¡Üx¡Üarctan2ʱ£¬f£¨x£©=$\frac{1}{2}$tanx£»
µ±arctan2£¼x£¼$\frac{¦Ð}{2}$£¬ÔÚ¡÷OBEÖУ¬f£¨x£©=S¾ØÐÎOABM-S¡÷OME=2-$\frac{1}{2}$EM•OM=2-$\frac{2}{tanx}$£»
µ±x=$\frac{¦Ð}{2}$ʱ£¬f£¨x£©=2£»
µ±$\frac{¦Ð}{2}$£¼x¡Ü¦Ð-arctan2ʱ£¬Í¬Àí¿ÉµÃf£¨x£©=2-$\frac{2}{tanx}$£®
µ±¦Ð-arctan2£¼x¡Ü¦Ðʱ£¬f£¨x£©=4-$\frac{1}{2}$¡Á1¡Átan£¨¦Ð-x£©=4+$\frac{1}{2}$tanx£®ÓÚÊǿɵãº
¢Ùf£¨$\frac{¦Ð}{3}$£©=$\frac{1}{2}$tan$\frac{¦Ð}{3}$=$\frac{\sqrt{3}}{2}$£¬ÕýÈ·£»
¢Úµ±$\frac{¦Ð}{2}$£¼x¡Ü¦Ð-arctan2ʱ£¬ÓÉf£¨x£©=2-$\frac{2}{tanx}$£¬ÎªÔöº¯Êý£®µ±¦Ð-arctan2£¼x¡Ü¦Ðʱ£¬f£¨x£©=4+$\frac{1}{2}$tanx£¬ÎªÔöº¯Êý£¬Òò´Ë²»ÕýÈ·£®
¢Û?x¡Ê[0£¬$\frac{¦Ð}{2}$]£¬ÓÉͼÐμ°ÆäÉÏÃæ£¬ÀûÓöԳÆÐԿɵãºf£¨x£©+f£¨¦Ð-x£©=4£¬Òò´ËÕýÈ·£»
¹ÊÑ¡C£®

µãÆÀ ±¾Ì⿼²éÁËͼÐÎÃæ»ýµÄ¼ÆËã¡¢ÕýÇк¯ÊýµÄµ¥µ÷ÐÔ¡¢¼òÒ×Âß¼­µÄÅж¨£¬¿¼²éÁË·ÖÀàÌÖÂÛ˼Ïë·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Éèf£¨x£©=£¨x-2£©2ex+ae-x£¬g£¨x£©=2a|x-2|£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£¬Èô¹ØÓÚx·½³Ìf£¨x£©=g£¨x£©ÓÐÇÒ½öÓÐ6¸ö²»µÈµÄʵÊý½â£®ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨$\frac{{e}^{2}}{2e-1}$£¬+¡Þ£©B£®£¨e£¬+¡Þ£©C£®£¨1£¬e£©D£®£¨1£¬$\frac{{e}^{2}}{2e-1}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÔÚ¡÷ABCÖУ¬¶¥µãA£¨2£¬1£©£¬B£¨-3£¬4£©£¬C£¨-1£¬-1£©£¬Ôò¡÷ABCÖØÐÄGµÄ×ø±êΪ£¨-$\frac{2}{3}$£¬$\frac{4}{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®º¯Êý$y=\frac{cosx}{x}$µÄµ¼ÊýΪ$\frac{-xsinx-cosx}{{x}^{2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªf£¨x£©=sin£¨¦Øx+¦È£©£¬ÆäÖЦأ¾0£¬¦È¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬f£¨x1£©=f£¨x2£©=0£¬|x2-x1|min=$\frac{¦Ð}{2}$£®f£¨x£©=f£¨$\frac{¦Ð}{3}-x$£©£¬½«f£¨x£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»µÃG£¨x£©£¬ÔòG£¨x£©µÄµ¥µ÷µÝ¼õÇø¼äÊÇ£¨¡¡¡¡£©
A£®[k¦Ð£¬k¦Ð+$\frac{¦Ð}{2}$]B£®[k¦Ð+$\frac{¦Ð}{6}$£¬k¦Ð+$\frac{2¦Ð}{3}$]C£®[k¦Ð+$\frac{¦Ð}{3}$£¬k¦Ð+$\frac{5¦Ð}{6}$]D£®[k¦Ð+$\frac{¦Ð}{12}$£¬k¦Ð+$\frac{7¦Ð}{12}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¶Ô¾ßÓÐÏßÐÔÏà¹Ø¹ØÏµµÄÁ½¸ö±äÁ¿xºÍy£¬²âµÃÒ»×éÊý¾ÝÈçϱíËùʾ£º
x24568
y20406070m
¸ù¾ÝÉÏ±í£¬ÀûÓÃ×îС¶þ³Ë·¨µÃµ½ËûÃǵĻعéÖ±Ïß·½³ÌΪy=10.5x+1.5£¬Ôòm=£¨¡¡¡¡£©
A£®85.5B£®80C£®85D£®90

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sin¦Øx•cos¦Øx-$\frac{1}{2}$cos2¦Øx£¨¦Ø£¾0£©µÄ×îСÕýÖÜÆÚΪ2¦Ð
£¨¢ñ£©Ç󦨵ÄÖµ£»
£¨¢ò£©ÔÚ¡÷ABCÖУ¬sinB£¬sinA£¬sinC³ÉµÈ±ÈÊýÁУ¬Çó´Ëʱf£¨A£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Éèm£¬nÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦ÂÊÇÁ½¸ö²»Í¬µÄÆ½Ãæ£¬Ôòm¡În µÄÒ»¸ö³ä·Ö²»±ØÒªÌõ¼þÊÇ£¨¡¡¡¡£©
A£®m¡Í¦Á£¬n¡Í¦Â£¬¦Á¡Î¦ÂB£®m¡Î¦Á£¬n¡Î¦Â£¬¦Á¡Î¦ÂC£®m¡Î¦Á£¬n¡Í¦Â£¬¦Á¡Í¦ÂD£®m¡Í¦Á£¬n¡Í¦Â£¬¦Á¡Í¦Â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èô¸´ÊýzÂú×㣨2-i£©z=1-i£¨iΪÐéÊýµ¥Î»£©£¬Ôò¸´ÊýzÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãÔÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸