精英家教网 > 高中数学 > 题目详情
15.设m,n是两条不同的直线,α,β是两个不同的平面,则m∥n 的一个充分不必要条件是(  )
A.m⊥α,n⊥β,α∥βB.m∥α,n∥β,α∥βC.m∥α,n⊥β,α⊥βD.m⊥α,n⊥β,α⊥β

分析 利用空间线面位置关系的判定与性质定理即可得出.

解答 解:对于A.由m⊥α,n⊥β,α∥β,可得:m∥n,反之不成立.
因此m∥n 的一个充分不必要条件是m⊥α,n⊥β,α∥β.
故选:A.

点评 本题考查了空间线面位置关系的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在三棱锥S-ABC中,三条棱SA、SB、SC两两互相垂直,且SA=SB=SC=a,M是边BC的中点.
(1)求异面直线SM与AC所成的角的大小;
(2)设SA与平面ABC所成的角为α,二面角S-BC-A的大小为β,分别求cosα,cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,正方形ABCD的边长为2,O为AD的中点,射线OP从OA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记∠AOP为x(x∈[0,π]),OP所经过的在正方形ABCD内的区域(阴影部分)的面积S=f(x),那么对于函数f(x)有以下三个结论,其中不正确的是(  )
①f($\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$
②函数f(x)在($\frac{π}{2}$,π)上为减函数
③任意x∈[0,$\frac{π}{2}$],都有f(x)+f(π-x)=4.
A.B.C.D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x-1)ex+1(x>0)
求证:(1)f(x)>0
(2)对?n∈N*,若${x_n}{e^{{x_{n+1}}}}={e^{x_n}}-1$,x1=1,求证:${x_n}>{x_{n+1}}>\frac{1}{{{2^{n+1}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某部门有8位员工,其中6位员工的月工资分别为8200,8300,8500,9100,9500,9600(单位:元),另两位员工的月工资数据不清楚,但两人的月工资和为17000元,则这8位员工月工资的中位数可能的最大值为8800元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若偶函数f(x)满足f(x)=$\left\{{\begin{array}{l}{x-1+ln3-ln(2x+1),0<x≤\frac{1}{2}}\\{\frac{(x+1)(x+2)(x+3)ln(2x-1)}{3x+5},x>\frac{1}{2}}\end{array}}$则曲线y=f(x)在点(-1,0)处的切线方程为(  )
A.6x-y+6=0B.x-3y+1=0C.6x+y+6=0D.x+3y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设数列{an}的前n项和为Sn,若Sn,Sn-1,Sn+1(n≥2)成等差数列,且a2=-2,则a4=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点A(0,-2),椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,F1,F2是椭圆的左、右焦点,且$\overrightarrow{A{F}_{1}}$•$\overrightarrow{A{F}_{2}}$=1,O为坐标原点.
(1)求椭圆C的方程;
(2)设过点A的动直线l与椭圆C相交于P,Q两点,当△POQ的面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设{an}是公比大于1的等比数列,Sn为其前n项和,已知S3=7,a1+3,3a2,a3+4构成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=an+lnan,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案