| A. | 6x-y+6=0 | B. | x-3y+1=0 | C. | 6x+y+6=0 | D. | x+3y+1=0 |
分析 求出当x<-$\frac{1}{2}$时,运用偶函数的定义,可得解析式,求出导数,可得切线的斜率,运用点斜式方程可得所求切线的方程.
解答 解:当x<-$\frac{1}{2}$时,-x>$\frac{1}{2}$时,
偶函数f(x)满足f(x)=f(-x)=$\frac{(-x+1)(-x+2)(-x+3)ln(-2x-1)}{-3x+5}$
=$\frac{({x}^{3}-6{x}^{2}+11x-6)ln(-2x-1)}{3x-5}$,
当x<-$\frac{1}{2}$时f′(x)=$\frac{[(3{x}^{2}-12x+11)ln(-2x-1)+({x}^{3}-6{x}^{2}+11x-6)•\frac{-2}{-2x-1}]•(3x-5)-3({x}^{3}-6{x}^{2}+11x-6)•ln(-2x-1)}{(3x-5)^{2}}$
可得曲线y=f(x)在点(-1,0)处的切线斜率为f′(-1)=$\frac{(0+48)×(-8)-0}{64}$=-6.
则曲线y=f(x)在点(-1,0)处的切线方程为y-0=-6(x+1),
即有6x+y+6=0.
故选:C.
点评 本题考查函数的性质,主要是偶函数的性质的运用:求解析式,考查导数的运用:求切线的方程,正确求导和运用点斜式方程是解题的关键,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 3n | B. | 3n-2 | C. | $\frac{{3}^{n}-1}{2}$ | D. | $\frac{{3}^{n}+1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 2 | 4 | 5 | 6 | 8 |
| y | 20 | 40 | 60 | 70 | m |
| A. | 85.5 | B. | 80 | C. | 85 | D. | 90 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m⊥α,n⊥β,α∥β | B. | m∥α,n∥β,α∥β | C. | m∥α,n⊥β,α⊥β | D. | m⊥α,n⊥β,α⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 12 | C. | 18 | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com