精英家教网 > 高中数学 > 题目详情
8.把1、2、3、4、5、6、7、8、9、10分别写在10张形状大小一样的卡片上,随机抽取一张卡片,则抽到写着偶数或大于6的数的卡片的概率为$\frac{7}{10}$.(结果用最简分数表示)

分析 先求出基本事件总数,再求出抽到写着偶数或大于6的数的卡片包含的基本事件个数,由此能求出抽到写着偶数或大于6的数的卡片的概率.

解答 解:把1、2、3、4、5、6、7、8、9、10分别写在10张形状大小一样的卡片上,
随机抽取一张卡片,
基本事件总数n=10,
抽到写着偶数或大于6的数的卡片包含的基本事件个数为7,
则抽到写着偶数或大于6的数的卡片的概率为
故答案为:$\frac{7}{10}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.求值:${({\frac{81}{16}})^{-\frac{1}{4}}}+{log_2}({4^3}×{2^4})$=$\frac{32}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设(x-2y)5(x+3y)4=a9x9+a8x8y+a7x7y2+…+a1xy8+a0y9,则a0+a8=-2590.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知n=3${∫}_{1}^{e}$$\frac{1}{x}$dx,在(x+2$\sqrt{x}$+1)n的展开式中,x2的系数是15(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x-1)ex+1(x>0)
求证:(1)f(x)>0
(2)对?n∈N*,若${x_n}{e^{{x_{n+1}}}}={e^{x_n}}-1$,x1=1,求证:${x_n}>{x_{n+1}}>\frac{1}{{{2^{n+1}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图:椭圆$\frac{x^2}{2}+{y^2}$=1与双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)有相同的焦点F1、F2,它们在y轴右侧有两个交点A、B,满足$\overrightarrow{{F_2}A}+\overrightarrow{{F_2}B}$=0.将直线AB左侧的椭圆部分(含A,B两点)记为曲线W1,直线AB右侧的双曲线部分(不含A,B两点)记为曲线W2.以F1为端点作一条射线,分别交W1于点P(xP,yP),交W2于点M(xM,yM)(点M在第一象限),设此时$\overrightarrow{{F_1}M}=m•\overrightarrow{{F_1}P}$.
(1)求W2的方程;
(2)证明:xP=$\frac{1}{m}$,并探索直线MF2与PF2斜率之间的关系;
(3)设直线MF2交W1于点N,求△MF1N的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若偶函数f(x)满足f(x)=$\left\{{\begin{array}{l}{x-1+ln3-ln(2x+1),0<x≤\frac{1}{2}}\\{\frac{(x+1)(x+2)(x+3)ln(2x-1)}{3x+5},x>\frac{1}{2}}\end{array}}$则曲线y=f(x)在点(-1,0)处的切线方程为(  )
A.6x-y+6=0B.x-3y+1=0C.6x+y+6=0D.x+3y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知u,v是方程x2-4tx-1=0(t∈R)的两个不相等的实数根,函数f(x)=$\frac{x-2t}{2{x}^{2}+2}$的定义域为[u,v],它的最大值、最小值分别记为f(x)max,f(x)min
(I)当t=0时,求f(x)max,f(x)min
(II)令g(t)=f(x)max-f(x)min,求函数g(t)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是八位同学400米测试成绩的茎叶图(单位:秒),则(  )
A.平均数为64B.众数为7C.极差为17D.中位数为64.5

查看答案和解析>>

同步练习册答案