精英家教网 > 高中数学 > 题目详情
17.已知u,v是方程x2-4tx-1=0(t∈R)的两个不相等的实数根,函数f(x)=$\frac{x-2t}{2{x}^{2}+2}$的定义域为[u,v],它的最大值、最小值分别记为f(x)max,f(x)min
(I)当t=0时,求f(x)max,f(x)min
(II)令g(t)=f(x)max-f(x)min,求函数g(t)的解析式.

分析 (I)当t=0时,u=-1,v=1,f(x)=$\frac{x}{2{x}^{2}+2}$(-1≤x≤1),确定f(x)在[-1,1]上单调递增,即可求f(x)max,f(x)min
(II)由题意,f′(x)=$\frac{-2({x}^{2}-4tx+1)}{(2{x}^{2}+2)^{2}}$≥0,f(x)在[u,v]上单调递增,令g(t)=f(x)max-f(x)min,利用韦达定理,即可求函数g(t)的解析式.

解答 解:(I)当t=0时,由x2-1=0得x=±1,∴u=-1,v=1,f(x)=$\frac{x}{2{x}^{2}+2}$(-1≤x≤1),
∵f′(x)=$\frac{2(1+x)(1-x)}{(2{x}^{2}+2)^{2}}$≥0,∴f(x)在[-1,1]上单调递增,
∴f(x)max=$\frac{1}{4}$,f(x)min=-$\frac{1}{4}$;
(II)由题意,f′(x)=$\frac{-2({x}^{2}-4tx+1)}{(2{x}^{2}+2)^{2}}$≥0,
∴f(x)在[u,v]上单调递增,∴f(x)max=f(v),f(x)min=f(u);
又u+v=4t,uv=-1,
∴g(t)=f(v)-f(u)=$\frac{v-2t}{2{v}^{2}+2}$-$\frac{u-2t}{2{u}^{2}+2}$=$\frac{\sqrt{(u+v)^{2}-4uv}[2t(u+v)-uv+1]}{2[(uv)^{2}+(u+v)^{2}-2uv+1]}$=$\frac{\sqrt{4{t}^{2}+1}}{2}$.

点评 本题考查函数的最值,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设数列{an}是等差数列,Sn为其前n项和,若S5=2a5,a3=4,则a9=(  )
A.4B.-22C.22D.80

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.把1、2、3、4、5、6、7、8、9、10分别写在10张形状大小一样的卡片上,随机抽取一张卡片,则抽到写着偶数或大于6的数的卡片的概率为$\frac{7}{10}$.(结果用最简分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=sin(2x+\frac{π}{3})$,将其图象向右平移φ(φ>0)个单位后得到的函数为奇函数,则φ的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x-3)=2x2-3x+1,则f(1)=(  )
A.15B.21C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知{an}为公差不为零的等差数列,其中a1,a2,a5成等比数列,a3+a4=12
(1)求数列{an}的通项公式;
(2)记bn=$\frac{2}{{a}_{n}{a}_{n+1}}$,设{bn}的前n项和为Sn,求最小的正整数n,使得Sn>$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某地实行高考改革,考生除参加语文,数学,外语统一考试外,还需从物理,化学,生物,政治,历史,地理六科中选考三科,要求物理,化学,生物三科至少选一科,政治,历史,地理三科至少选一科,则考生共有多少种选考方法(  )
A.6B.12C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在等差数列{an}中,已知a4=5,a3是a2和a6的等比中项,则数列{an}的前5项的和为(  )
A.15B.20C.25D.15或25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在正四面体ABCD中,M,N分别是BC和DA的中点,则异面直线MN和CD所成角的余弦值为$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

同步练习册答案