精英家教网 > 高中数学 > 题目详情
1.已知抛物线y=ax2+bx+c通过点P(1,1),且在点Q(2,-1)处的切线平行于直线y=x-3,则抛物线方程为(  )
A.y=3x2-11x+9B.y=3x2+11x+9C.y=3x2-11x-9D.y=-3x2-11x+9

分析 先求导数y′=2ax+b,而根据条件知抛物线过点P(1,1),Q(2,-1),以及在Q点的切线斜率为1,这样便可得出关于a,b,c的方程组,解出a,b,c便可得出抛物线的方程.

解答 解:∵y′=2ax+b,
∴抛物线在点Q(2,-1)处的切线斜率为:4a+b;
根据条件知抛物线过P,Q点,过Q的切线斜率为1;
∴$\left\{\begin{array}{l}{a+b+c=1}\\{4a+2b+c=-1}\\{4a+b=1}\end{array}\right.$;
解得$\left\{\begin{array}{l}{a=3}\\{b=-11}\\{c=9}\end{array}\right.$;
∴抛物线方程为y=3x2-11x+9.
故选:A.

点评 考查函数在某点的导数和过该点切线斜率的关系,以及平行直线的斜率关系,曲线上的点的坐标和曲线方程的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知f(x)=|x+1|+|x+2|+…+|x+2016|+|x-1|+|x-2|+…+|x-2016|(x∈R),且f(a2-3a+2)=f(a-1),则满足条件的所有整数a的和是6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知A={x|x2-4x>0},B={x|2x-3>0},全集U=R,则A∩B=(4,+∞),(∁UA)∪(∁UB)=(-∞,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下列关于算法的说法,正确的序号是(2)、(3)、(4).
(1)一个问题的算法是唯一的;
(2)算法的操作步骤是有限的;
(3)算法的每一步操作必须是明确的,不能有歧义;
(4)算法执行后一定产生确定的结果.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知有条光线从点A(-2,1)出发射向x轴B,经过x轴反射后射向y轴上的C点,再经过y轴反射后到达点D(-2,7).
(1)求直线BC的方程.  
(2)求光线从A点到达D点所经过的路程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.双曲线过点(4,$\sqrt{3}$)、(3,$\frac{{\sqrt{5}}}{2}$),则双曲线的标准方程为$\frac{x^2}{4}-{y^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设正项等比数列{an}的前n项和为Sn,记bn=$\frac{{{a}_{n+1}}^{2}}{{a}_{n}}$.且数列{bn}的前n项和为Tn
(1)求证:{bn}是等比数列;
(2)若Sn<Tn恒成立,求等比数列{an}公比q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知定义域为R的函数f(x)满足f(x+1)=2f(x),当x∈(1,2]时,f(x)=x2-x,则f(x)在x∈(-2,-1]上的最大值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.化简:$\begin{array}{l}\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11}{2}π-α)}}{{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9}{2}π+α)}}$-$\frac{sin(-α)}{cos(-α)}\end{array}$.

查看答案和解析>>

同步练习册答案