分析 (1)由题意可设数列{an}首项a1>0,公比q>0,求出bn,由等比数列的定义证明{bn}是等比数列;
(2)分析q=1时与已知矛盾;当q≠1时,由Sn<Tn即可求得等比数列{an}公比q的取值范围.
解答 证明:(1)∵数列{an}是正项等比数列,则首项a1>0,公比q>0,
${b}_{n}=\frac{{{a}_{n+1}}^{2}}{{a}_{n}}=\frac{({a}_{1}{q}^{n})^{2}}{{a}_{1}{q}^{n-1}}={a}_{1}{q}^{n+1}$,
$\frac{{b}_{n+1}}{{b}_{n}}=\frac{{a}_{1}{q}^{n+2}}{{a}_{1}{q}^{n+1}}=q$,为定值,
∴{bn}是等比数列;
解:(2)若q=1,则an=a1,bn=a1,Sn=Tn,与已知矛盾,∴q≠1;
由Sn<Tn,得$\frac{{S}_{n}}{{T}_{n}}<1$,
即$\frac{\frac{{a}_{1}(1-{q}^{n})}{1-q}}{\frac{{a}_{1}{q}^{2}(1-{q}^{n})}{1-q}}<1$,得q2>1,
即q<-1(舍)或q>1.
点评 本题考查数列递推式,考查了等比关系的确定,训练了不等式的解法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,1) | B. | ($\frac{1}{2}$,2] | C. | [0,1] | D. | (1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=3x2-11x+9 | B. | y=3x2+11x+9 | C. | y=3x2-11x-9 | D. | y=-3x2-11x+9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有最大值2,最小值2(2-$\sqrt{2}$)2 | B. | 有最大值2,最小值0 | ||
| C. | 有最大值10,最小值2(2-$\sqrt{2}$)2 | D. | 最值不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A1C⊥B1D1 | B. | B1D1∥平面BDC1 | ||
| C. | A1C⊥平面BDC1 | D. | 异面直线AD与BC1所成的角为30° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com