精英家教网 > 高中数学 > 题目详情
据气象台预报,一台风中心位于某沿海城市A东偏南θ(cosθ=
2
10
)方向300km的海面B处,正以20km/h的速度向西偏北45°方向移动(如图所示),台风影响的范围为圆形区域,半径为60km,并以10km/h的速度不断增大.求几小时后该市开始受到台风的影响,受影响的时间是多长?
考点:解三角形的实际应用
专题:应用题,解三角形
分析:建立坐标系,设在时刻:t(h)台风中心B(x,y)的坐标进而可知此时台风侵袭的区域,根据题意可知其中r(t)=10t+60,若在t时,该城市A受到台风的侵袭,则有(0-x)2+(0-y)2≤(10t+60)2,进而可得关于t的一元二次不等式,求得t的范围,答案可得.
解答: 解:以A为原点,正东方向为x轴正向.
∵cosθ=
2
10
,∴sin(90°-θ)=
2
10

cos(90°-θ)=
7
2
10

在时刻:t(h)台风中心B(x,y)的坐标为
x=300×
2
10
-20×
2
2
t,y=-300×
7
2
10
+20×
2
2
t
令(x′,y′)是台风边缘线上一点,则此时台风侵袭的区域是(x′-x)2+(y′-y)2≤[r(t)]2
其中r(t)=10t+60,
若在t时,该城市受到台风的侵袭,
则有(0-x)2+(0-y)2≤(10t+60)2
即(300×
2
10
-20×
2
2
t)2+-300×
7
2
10
+20×
2
2
t)2≤(10t+60)2
即t2-36t+288≤0,
解得12≤t≤24.
答:12小时后该城市开始受到台风气侵袭,受到台风的侵袭的时间有12小时.
点评:本题主要考查了圆的方程的综合运用,考查了学生运用所学知识解决实际问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

OC
=
2
3
OA
+
1
3
OB
则(  )
A、
AC
=-
1
3
AB
B、
AC
=
2
3
AB
C、
AC
=
1
3
AB
D、
AC
=-
2
3
AB

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
|x|
xax
(a>1)的图象的大致形状是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx-x(a≠0).
(1)求函数f(x)的单调区间;
(2)若a>0,设A(x1,y1),B(x2,y2)是函数f(x)图象上的任意两点(x1<x2),记直线AB的斜率为k,求证:f′(
x1+2x2
3
)>k.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知⊙O:x2+y2=1和定点A(2,2),由⊙O外一点P(a,b)向⊙O引切线PQ,Q为切点,且满足|PQ|=|PA|.
(Ⅰ) 求实数a,b之间满足的关系式;
(Ⅱ) 求线段PQ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3
sin(π+ωx)sin(
2
-ωx)-cos2ωx(ω>0)的最小正周期为T=π.
(1)求f(
3
)的值;
(2)在△ABC中,角A、B、C所对应的边分别为a、b、c,若有(2a-c)cosB=bcosC,则求角B的大小以及
f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(3π+α)=-3,求:
(1)tan(
π
4
+α);    
(2)4sin2α-3sinαcosα.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个口袋内有4个不同的红球,6个不同的白球.
(1)从中任取4个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记2分,取一个白球记1分,从中任取4个球,使总分不大于6分的取法有多少种?.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,棱长为a,M、N分别是A1B和AC的中点.
(1)求异面直线A1B与AC所成角;
(2)求证:MN∥平面BB1C1C.

查看答案和解析>>

同步练习册答案