精英家教网 > 高中数学 > 题目详情

【题目】若点(p,q),在|p|≤3,|q|≤3中按均匀分布出现.
(1)点M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?
(2)试求方程x2+2px﹣q2+1=0有两个实数根的概率.

【答案】
(1)解:根据题意,点(p,q),在|p|≤3,|q|≤3中,即在如图的正方形区域,

其中p、q都是整数的点有6×6=36个,

点M(x,y)横、纵坐标分别由掷骰子确定,即x、y都是整数,且1≤x≤3,1≤y≤3,

点M(x,y)落在上述区域有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),有9个点,

所以点M(x,y)落在上述区域的概率P1=


(2)解:|p|≤3,|q|≤3表示如图的正方形区域,易得其面积为36;

若方程x2+2px﹣q2+1=0有两个实数根,则有△=(2p)2﹣4(﹣q2+1)≥0,

解可得p2+q2≥1,为如图所示正方形中圆以外的区域,其面积为36﹣π,

即方程x2+2px﹣q2+1=0有两个实数根的概率,P2=


【解析】(1)是古典概型,首先分析可得|p|≤3,|q|≤3整点的个数,进而分析可得点M的纵横坐标的范围,可得M的个数,由古典概型公式,计算可得答案;(2)是几何概型,首先可得|p|≤3,|q|≤3表示正方形区域,易得其面积,进而根据方程x2+2px﹣q2+1=0有两个实数根,则有△=(2p)2﹣4(﹣q2+1)≥0,变形可得p2+q2≥1,分析可得其表示的区域即面积,由几何概型公式,计算可得答案.
【考点精析】根据题目的已知条件,利用几何概型的相关知识可以得到问题的答案,需要掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示的多面体是由一个直平行六面体被平面所截后得到的,其中

(Ⅰ)求证: 平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程为,直线的参数方程为为参数, ).

(Ⅰ)把曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;

(Ⅱ)若直线经过点,求直线被曲线截得的线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为(

A.7
B.9
C.11
D.13

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如表:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8


(1)计算甲、乙两人射箭命中环数的平均数和标准差;
(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)是奇函数,并且在R上为增函数,若0≤θ≤ 时,f(msinθ)+f(1﹣m)>0恒成立,则实数m的取值范围是(
A.(0,1)
B.(﹣∞,0)
C.(﹣∞,1)
D.(﹣∞,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某造船公司年造船量是20已知造船x艘的产值函数为R(x)3 700x45x210x3(单位:万元)成本函数为C(x)460x5 000(单位:万元)

(1)求利润函数P(x)(提示:利润=产值-成本)

(2)问年造船量安排多少艘时可使公司造船的年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*
(1)证明数列{an﹣n}为等比数列
(2)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案