分析 令$g(m)=\frac{m}{x}+x$,m∈[$\frac{1}{2}$,2],显然g(m)max=g(2)=x+$\frac{2}{x}$,不等式f(x)+n≤10在x∈[$\frac{1}{4}$,1]恒成立?(x+$\frac{2}{x}+n$)max≤10,只需$\left\{\begin{array}{l}{\frac{1}{4}+8+n≤10}\\{1+2+n≤10}\end{array}\right.$,即n$≤\frac{7}{4}$.即可求得实数n的取值范围
解答 解:令$g(m)=\frac{m}{x}+x$,m∈[$\frac{1}{2}$,2],显然g(m)max=g(2)=x+$\frac{2}{x}$,
不等式f(x)+n≤10在x∈[$\frac{1}{4}$,1]恒成立,?[f(x)+n]max≤10在x∈[$\frac{1}{4}$,1]恒成立.
即(x+$\frac{2}{x}+n$)max≤10,
只需$\left\{\begin{array}{l}{\frac{1}{4}+8+n≤10}\\{1+2+n≤10}\end{array}\right.$,即n$≤\frac{7}{4}$.故实数n的取值范围是(-$∞,\frac{7}{4}$].
故答案为:(-$∞,\frac{7}{4}$]
点评 本题考查了双参数问题的处理方法,考查了转化思想,属于中档题,
科目:高中数学 来源: 题型:选择题
| A. | 第四象限 | B. | 第三象限 | C. | 第二象限 | D. | 第一象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>$\frac{1}{e}$ | B. | x1-x2随着a的增大而减小 | ||
| C. | x1x2<1 | D. | x1+x2随着a的增大而增大 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com