精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=x+$\frac{m}{x}$(x≠0),m,n∈R,若对任意的m∈[$\frac{1}{2}$,2],不等式f(x)+n≤10在x∈[$\frac{1}{4}$,1]恒成立,则实数n的取值范围是(-∞,$\frac{7}{4}$].

分析 令$g(m)=\frac{m}{x}+x$,m∈[$\frac{1}{2}$,2],显然g(m)max=g(2)=x+$\frac{2}{x}$,不等式f(x)+n≤10在x∈[$\frac{1}{4}$,1]恒成立?(x+$\frac{2}{x}+n$)max≤10,只需$\left\{\begin{array}{l}{\frac{1}{4}+8+n≤10}\\{1+2+n≤10}\end{array}\right.$,即n$≤\frac{7}{4}$.即可求得实数n的取值范围

解答 解:令$g(m)=\frac{m}{x}+x$,m∈[$\frac{1}{2}$,2],显然g(m)max=g(2)=x+$\frac{2}{x}$,
不等式f(x)+n≤10在x∈[$\frac{1}{4}$,1]恒成立,?[f(x)+n]max≤10在x∈[$\frac{1}{4}$,1]恒成立.
即(x+$\frac{2}{x}+n$)max≤10,
只需$\left\{\begin{array}{l}{\frac{1}{4}+8+n≤10}\\{1+2+n≤10}\end{array}\right.$,即n$≤\frac{7}{4}$.故实数n的取值范围是(-$∞,\frac{7}{4}$].
故答案为:(-$∞,\frac{7}{4}$]

点评 本题考查了双参数问题的处理方法,考查了转化思想,属于中档题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若直线y=ax+b经过第二、三、四象限,则圆$\left\{\begin{array}{l}{x=a+rcosθ}\\{y=b+rsinθ}\end{array}\right.$,(θ为参数)的圆心在(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1=$\frac{\sqrt{2}}{2}$AB,D为AB的中点,设AC1、A1C交于O点.
(1)证明:BC1∥平面A1DC;
(2)证明:AC1⊥平面A1CB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC与BD交于点O,PC⊥底面ABCD,E为PB上一点,G为PO中点.
(1)若PD∥平面ACE,求证:E为PB的中点;
(2)若AB=$\sqrt{2}$PC,求证:CG⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知圆x2+y2=4的动弦AB恒过点(1,1),若弦长AB为整数,则直线AB的条数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x-aex有两个零点x1,x2,且x1<x2,则下列说法中正确的是(  )
A.a>$\frac{1}{e}$B.x1-x2随着a的增大而减小
C.x1x2<1D.x1+x2随着a的增大而增大

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在平面直角坐标系xoy中,已知圆O1与x轴正半轴及射线l:y=kx(x≥0)都相切.
(1)若k=$\frac{4}{3}$,且直线y=-2x+3被圆O1所截得的弦长为$\frac{{2\sqrt{5}}}{5}$,求圆O1的方程;
(2)若圆O2与x轴正半轴及射线l也都相切,且与圆O1都经过点(2,2),且两圆的半径之积为2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=|x-a|+|x-1|(a>0)的最小值是2,则a的值是3,不等式f(x)≥4的解集是(-∞,0]∪[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知(1-x)5=a0+a1x+a2x2+a3x3+a5x5,则(a0+a2+a4)(a1+a3+a5)的值等于-256.

查看答案和解析>>

同步练习册答案