精英家教网 > 高中数学 > 题目详情
数列{an}中,a1=1,Sn表示前n项和,且Sn,Sn+1,2S1成等差数列.
(1)计算S1,S2,S3的值;
(2)猜想Sn的表达式,并证明.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件,利用等差数列的性质,结合递推思想能求出S1,S2,S3的值.
(2)由S1,S2,S3的值,猜想Sn=
2n-1
2n-1
=2-(
1
2
n-1.再利用等差数列的性质进行证明.
解答: 解:(1)因为数列{an}中,a1=1,Sn表示前n项和,且Sn,Sn+1,2S1成等差数列,
∴2Sn+1=Sn+2S1
∵S1=a1=1,∴n=1时,2S2=S1+2S1=3,解得S2=
3
2

n=2时,2S3=S2+2S1=
7
2
,解得S3=
7
4
.…(6分)
(2)猜想Sn=
2n-1
2n-1
=2-(
1
2
n-1
证明:∵Sn+1=
1
2
Sn+1
,∴Sn+1-2=
1
2
(Sn-2)

Sn-2=(S1-2)(
1
2
)n-1
=-(
1
2
n-1,.
Sn=2-(
1
2
)n-1
.…(12分)
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意等差数列性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如表所示为实验小学某班(共有50人)学生一次测验语文、数学两门学科成绩的分布,成绩分1-5五个档次.例如表中所示语文成绩为1等且数学成绩为2等的学生为3人.现任意抽一个学号(1-50),其对应学生的英语成绩为X等,数学成绩为Y等.设X、Y为随机变量.
数学
1 2 3 4 5
语文 1 2 3 1 3 1
2 1 0 7 5 1
3 2 1 0 6 3
4 1 m 6 0 n
5 0 0 1 1 2
(1)求“X>3且Y=3”的概率;
(2)求随机变量X的概率分布及数学期望;
(3)若y的期望为
173
50
,试确定m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

郑州是一个缺水的城市,人均水资源占有量仅为全国的十分之一,政府部门提出“节约用水,我们共同的责任”倡议,某用水量较大的企业积极响应政府号召对生产设备进行技术改造,以达到节约用水的目的,下表提供了该企业节约用水技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产用水y(吨)的几组对照数据:
x 2 3 4 5
y 3 3.5 4.7 6
(Ⅰ)请根据上表提供的数据,若x,y之间是线性相关,求y关于x的线性回归方程
y
=bx+a;
(Ⅱ)已知该厂技术改造前100吨甲产品的生产用水为130吨,试根据(Ⅰ)求出的线性回归方程,预测技术改造后生产100吨甲产品的用水量比技术改造前减少多少吨水?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边过点P(-4,3).
(Ⅰ)求
tanα
sin(π-α)-cos(
π
2
+α)
的值;
(Ⅱ)若β为第三象限角,且tanβ=
4
3
,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=2sin(
x
3
+
π
6
),求:
(1)它的单调增区间;
(2)当x为何值时,使得y>1?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+6.
(1)解不等式f(x)<0;
(2)若不等式f(x)>0对x<0恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(1+x)2-21n(1+x).
(1)求f(x)的单调区间;
(2)试讨论关于x的方程:f(x)=x2+x+a在区间[0,2]上的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知X的分布列为P(X=k)=
c
2k
(k=1,2,…,6),其中c为常数,则P(X≤2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(x-1)11展开式中x的所有偶次项的系数之和是
 

查看答案和解析>>

同步练习册答案