精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆E的右焦点与抛物线的焦点重合,点M在椭圆E上.

(Ⅰ)求椭圆E的标准方程;

(Ⅱ)设,直线与椭圆E交于A,B两点,若直线PA,PB关于x轴对称,求的值.

【答案】(Ⅰ);(Ⅱ) .

【解析】试题分析:(1)求出抛物线的焦点,可得椭圆的焦点,即,再由椭圆的定义,结合两点的距离公式,可得,由的关系,可得,进而得到椭圆方程;
(2)由题意可得,设,运用两点的斜率公式和点在直线上,将直线代入椭圆方程,运用韦达定理,代入可得的方程,化简整理,解方程可得的值.

试题解析:

(Ⅰ) 因为抛物线的焦点坐标为,所以,

所以

.因为

所以椭圆E的方程为.

(Ⅱ)设

联立

所以, ①

因为直线PA, PB关于x轴对称,

所以

通分得

所以

整理,得. ②

将①代入②,得 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】通过研究学生的学习行为,专家发现,学生的注意力着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,f(t)表示学生注意力随时间t(分钟)的变化规律\left(f(t)越大,表明学生注意力越集中),经过实验分析得知:

(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?

(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?

(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,教师能否在学生达到所需的状态下讲授完这道题目?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,f(x)=2x+ (x∈R).

(1)当x∈(0,1]时,求f(x)的解析式.

(2)判断f(x)在(0,1]上的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的圆台中,是下底面圆的直径,是上底面圆的直径,是圆台的一条母线.

()已知分别为的中点,求证:平面

()已知,求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x+4)+f(x-1)=x2-2x,其中f(x)是二次函数,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在某校组织的“共筑中国梦”竞赛活动中,甲、乙两班各有6位选手参赛,在第一轮笔试环节中,评委将他们的笔试成绩作为样本数据,绘制成如下图所示的茎叶图.为了增加结果的神秘感,主持人暂时没有公布甲、乙两班最后一位选手的成绩.

(Ⅰ)求乙班总分超过甲班的概率;

(Ⅱ)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分.请你从平均分和方差的角度来分析两个班的选手的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让贫困地区的孩子们过一个温暖的冬天,某校阳光志愿者社团组织“这个冬天不再冷”冬衣募捐活动,共有50名志愿者参与.志愿者的工作内容有两项:①到各班做宣传,倡议同学们积极捐献冬衣;②整理、打包募捐上来的衣物.每位志愿者根据自身实际情况,只参与其中的某一项工作.相关统计数据如下表所示:

(1)如果用分层抽样的方法从参与两项工作的志愿者中抽取5人,再从这5人中选2人,那么“至少有1人是参与班级宣传的志愿者”的概率是多少?

(2)若参与班级宣传的志愿者中有12名男生,8名女生,从中选出2名志愿者,用表示所选志愿者中的女生人数,写出随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)已知

(1)求函数的单调区间;

(2)设,若存在使得成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆的一组等分点分别涂上红色或蓝色,从任意一点开始,按逆时针方向依次记录个点的颜色,称为该圆的一个阶段序,当且仅当两个阶色序对应位置上的颜色至少有一个不相同时,称为不同的阶色序.若某圆的任意两个阶段序均不相同,则称该圆为阶魅力圆.3阶魅力圆中最多可有的等分点个数为

A.4 B.6

C. 8 D.10

查看答案和解析>>

同步练习册答案