精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

(2)已知曲线与曲线交于两点,且,求实数的值.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析: (Ⅰ)根据加减相消法将曲线参数方程化为普通方程,利用将曲线(Ⅱ)先将直线参数方程转化为为参数, ),再根据直线参数方程几何意义由,最后将直线参数方程代入,利用韦达定理得关于的方程,解得的值.

试题解析: (Ⅰ)曲线参数方程为,∴其普通方程

由曲线的极坐标方程为,∴

,即曲线的直角坐标方程.

(Ⅱ)设两点所对应参数分别为,联解

要有两个不同的交点,则,即,由韦达定理有

根据参数方程的几何意义可知

又由可得,即

∴当时,有,符合题意.

时,有,符合题意.

综上所述,实数的值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足,求数列的通项公式.勤于思考的小红设计了下面两种解题思路,请你选择其中一种并将其补充完整.

思路1:先设的值为1,根据已知条件,计算出_________ __________ _________

猜想: _______.

然后用数学归纳法证明.证明过程如下:

①当时,________________,猜想成立

②假设N*)时,猜想成立,即_______

那么,当时,由已知,得_________

,两式相减并化简,得_____________(用含的代数式表示).

所以,当时,猜想也成立.

根据①和②,可知猜想对任何N*都成立.

思路2:先设的值为1,根据已知条件,计算出_____________

由已知,写出的关系式: _____________________

两式相减,得的递推关系式: ____________________

整理: ____________

发现:数列是首项为________,公比为_______的等比数列.

得出:数列的通项公式____,进而得到____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱底面为正三角形,分别中点

求证:

点,四棱锥体积为求三棱锥表面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公比小于1的等比数列的前项和为

(1)求数列的通项公式;

(2)设,若,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当a=2时,求(x)在x∈[1,e2]时的最值(参考数据:e2≈7.4);

(Ⅱ)若,有f(x)+g(x)≤0恒成立,求实数a的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数),的导函数.

)当时,求证:

(Ⅱ)是否存在正整数,使得对一切恒成立?若存在,求出的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)R上的奇函数,当x0时,解析式为f(x).

(1)f(x)R上的解析式;

(2)用定义证明f(x)(0,+∞)上为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P—ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F是PC的中点.

(Ⅰ)证明:PB∥平面AEC;

(Ⅱ)若底面ABCD为正方形,,求二面角C—AF—D大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=.

(1)求f(2)+f,f(3)+f的值;

(2)求证:f(x)+f是定值;

(3)求f(2)+f+f(3)+f+…++f的值.

查看答案和解析>>

同步练习册答案