精英家教网 > 高中数学 > 题目详情
20.设Sn为等差数列{an}的前n项和,已知在Sn中有 S12<0,S13>0,那么Sn中最小的是(  )
A.S4B.S5C.S6D.S7

分析 由等差数列的求和公式和等差数列的性质可得等差数列{an}的前6项为负数,从第7项开始为正数,可得结论.

解答 解:由题意可得S12=$\frac{12({a}_{1}+{a}_{12})}{2}$=6(a1+a12)=6(a6+a7)<0,
S13=$\frac{13({a}_{1}+{a}_{13})}{2}$=$\frac{13×2{a}_{7}}{2}$=13a7>0,
∴a6+a7<0,a7>0,
∴a6<0,a7>0,
∴等差数列{an}的前6项为负数,从第7项开始为正数,
∴Sn中最小的是S6
故选:C

点评 本题考查等差数列的通项公式和等差数列的性质,得出数列项的正负规律是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex(-x2+b)在点P(0,f(0))处的切线方程为y=3x+3
(1)求函数f(x)的单调递减区间;
(2)当x∈(-1,+∞)时,f(x)+x2ex+2xex≥m(x+1)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆C1:(x-2)2+(y+1)2=1,圆C2与圆C1关于直线x-y-2=0对称,则圆C2的方程为(  )
A.(x-1)2+y2=1B.x2+(y-1)2=1C.(x+1)2+y2=1D.x2+(y+1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若x是三角形的最小角,则y=sinx的值域是(  )
A.[-1,1]B.(0,$\frac{\sqrt{3}}{2}$]C.(0,$\frac{\sqrt{3}}{2}$)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A、B、C所对的边为a、b、c.已知sinB=bsinA.
(1)求边a;
(2)若A=$\frac{π}{3}$,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.动圆G与圆O1:x2+y2+2x=0外切,同时与圆O2:x2+y2-2x-8=0内切,设动圆圆心G的轨迹为Γ.
(1)求曲线Γ的方程;
(2)直线x=t(t>0)与曲线Γ相交于不同的两点M,N,以MN为直径作圆C,若圆C与y轴相交于两点P,Q,求△PQC面积的最大值;
(3)设D(${\sqrt{3}$,0),过D点的直线l(不垂直x轴)与曲线Γ相交于A,B两点,与y轴交于点E,若$\overrightarrow{EA}$=λ$\overrightarrow{AD}$,$\overrightarrow{EB}$=μ$\overrightarrow{BD}$,试探究λ+μ的值是否为定值,若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知x与y之间的一组数据:
x0123
y1357
则y与x的线性回归方程$\hat y$=bx+a必过(  )
A.(2,2)B.(1.5,3.5)C.(1,2)D.(1.5,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.把二进制数11101(2)化为十进制数,其结果为(  )
A.28B.29C.30D.31

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解不等式
(1)-2x2>3x-9
(2)x(9-x)>0.

查看答案和解析>>

同步练习册答案