精英家教网 > 高中数学 > 题目详情
(1)已知|x-4|+|3-x|<a若不等式的解集为空集,求a的范围
(2)已知a,b,c∈R+,且a+b+c=1,求证:a2+b2+c2
1
3
考点:不等式的证明
专题:不等式的解法及应用
分析:(1)利用绝对值三角不等式求出左侧部分的最小值,然后转化求出a的范围.
(2)利用已知条件求出1的平方,利用重要不等式求出结果即可.
解答: (1)解:∵|x-4|+|3-x|≥|(x-4)+(3-x)|=1,
又|x-4|+|3-x|<a若不等式的解集为空集,
∴a≤1…(5分)
(2)证明:由a+b+c=1,得1=(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≤3(a2+b2+c2
∴a2+b2+c2
1
3
.(当且仅当a=b=c时取等号) …(10分)
点评:本题考查绝对值不等式的解法,不等式的证明,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m、n是两条不同的直线,α、β是两个不同的平面.下列四个命题中,正确的是(  )
A、α∥β,m?α,n?β,则m∥n
B、α⊥β,m⊥β,则m∥α或m?α
C、α⊥β,m?α,n?β,则m⊥n
D、α∥β,m⊥β,n⊥α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+3x|x-a|,其中a∈R,设a≠0,函数f(x)在开区间(m,n)上既有最大值又有最小值,求m、n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,AB∥CD,AB⊥AD,AD=CD=1,AA1=AB=2,E为AA1的中点.
(1)求证:B1C1⊥CE;
(2)求二面角B1-CE-C1大小的余弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为
2
6
,求线段AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,4Sn=an2+2an-3,若a1,a2,a3成等比数列,且n≥3时,an>0
(1)求证:当n≥3时,{an}成等差数列;
(2)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点M(
6
,1),离心率为
2
2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知点P(
6
,0),若A,B为已知椭圆上两动点,且满足
PA
PB
=-2,试问直线AB是否恒过定点,若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和为Sn,且Sn=
1
4
(an+1)2(n∈N*).
(1)求a1、a2
(2)求证:数列{an}是等差数列;
(3)令bn=an-19,问数列{bn}的前多少项的和最小?最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

在△OAB中,∠AOB=120°,OA=OB=2
3
,边AB的四等分点分别为A1,A2,A3,A1靠近A,执行如图算法后结果为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱锥P-ABC的高为2,侧棱与底面所成的角为45°,则点A到侧面PBC的距离是(  )
A、
5
B、2
2
C、
2
D、
6
5
5

查看答案和解析>>

同步练习册答案