精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,4Sn=an2+2an-3,若a1,a2,a3成等比数列,且n≥3时,an>0
(1)求证:当n≥3时,{an}成等差数列;
(2)求{an}的前n项和Sn
考点:等差数列与等比数列的综合
专题:综合题,点列、递归数列与数学归纳法
分析:(1)根据4Sn=an2+2an-3,再写一式两式相减,利用十字相乘法即可得到n≥3时,an的相邻两项之差为常数,即为等差数列;
(2)求出数列的第1,2项,可求数列的通项,即可求出{an}的前n项和Sn
解答: (1)证明:∵4Sn=an2+2an-3,4Sn+1=an+12+2an+1-3,
两式相减整理可得(an+1+an)(an+1-an-2)=0,
∵n≥3时,an>0,
∴an+1-an-2=0,
∴an+1-an=2,
∴n≥3时,{an}成等差数列;
(2)解:∵4S1=a12+2a1-3,
∴a1=3或a1=-1,
∵a1,a2,a3成等比数列,
∴an+1+an=0,
∴q=-1,
∵a3>0,
∴a1=3,
∴an=
3•(-1)n-1(n=1,2)
2n-3(n≥3)

∴Sn=
3
2
[1-(-1)n](n=1,2)
n2-2n(n≥3)
点评:本题考查数列递推式,考查等差数列的证明,考查数列的通项与求和,确定数列的通项是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A=|x|x2-x<0},B={x|x2-2x<3},则(  )
A、A∪B=B
B、A∩B=B
C、A∩B=∅
D、A∪B=R

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数g(x)=
1
3
x3+
1
2
ax2-bx,(a,b∈R)在其图象上一点P(x,y)处的切线的斜率记为f(x).
(Ⅰ)若方程f(x)=0有两个实根分别为-2和4,求
4
-2
f(x)dx;
(Ⅱ)若g(x)在区间[-1,3]上是单调递减函数,求a2+b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,且an是Sn和1的等差中项,等差数列{bn}满足b1=a1,b4=S3
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设cn=
1
bnbn+1
,数列{cn}的前n项和为Tn,证明:Tn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知直线l的参数方程为
x=5+at
y=-1-t
 (t
为参数),圆C的极坐标方程为ρ=2
2
cos(θ-
π
4
)

(Ⅰ)若圆C关于直线l对称,求a的值;
(Ⅱ)若圆C与直线l相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知|x-4|+|3-x|<a若不等式的解集为空集,求a的范围
(2)已知a,b,c∈R+,且a+b+c=1,求证:a2+b2+c2
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+
5
2
x2+ax+b(a,b为常数),其图象是曲线C.
(1)当a=-2时,求函数f(x)的单调减区间;
(2)设函数f(x)的导函数为f′(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;
(3)已知点A为曲线C上的动点,在点A处作曲线C的切线l1与曲线C交于另一点B,在点B处作曲线C的切线l2,设切线l1,l2的斜率分别为k1,k2.问:是否存在常数λ,使得k2=λk1?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

记Sk=1k+2k+3k+…+nk,当k=1,2,3,…时,观察下列等式:
S1=
1
2
n2+
1
2
n,
S2=
1
3
n3+
1
2
n2+
1
6
n,
S3=
1
4
n4+
1
2
n3+
1
4
n2

S4=
1
5
n5+
1
2
n4+
1
3
n3-
1
30
n,
S5=
1
6
n6+
1
2
n5+
5
12
n4+An2

,…
可以推测,A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1的左右焦点为F1,F2,P是双曲线左支上一点,满足|
PF1
|=|
F1F2
|,直线PF2与圆x2+y2=a2相切,则双曲线的离心率e为
 

查看答案和解析>>

同步练习册答案