精英家教网 > 高中数学 > 题目详情
双曲线
x2
a2
-
y2
b2
=1的左右焦点为F1,F2,P是双曲线左支上一点,满足|
PF1
|=|
F1F2
|,直线PF2与圆x2+y2=a2相切,则双曲线的离心率e为
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先设PF2与圆相切于点M,利用|
PF1
|=|
F1F2
|,及直线PF1与圆x2+y2=a2相切,可得几何量之间的关系,从而可求双曲线的离心率的值.
解答: 解:设PF2与圆相切于点M,∵|
PF1
|=|
F1F2
|,
∴△PF1F2为等腰三角形,
∴|F2M|=
1
4
|PF2|,
又在直角△F2MO中,|F2M|2=|F2O|2-a2=c2-a2
∴|F2M|=b=
1
4
|PF2|①
又|PF2|=|PF1|+2a=2c+2a   ②,
c2=a2+b2 ③
由①②③解得e=
c
a
=
5
3

故答案为:
5
3
点评:本题考查直线与圆相切,考查双曲线的定义,考查双曲线的几何性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,4Sn=an2+2an-3,若a1,a2,a3成等比数列,且n≥3时,an>0
(1)求证:当n≥3时,{an}成等差数列;
(2)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

记实数x1,x2,…,xn中的最大数为max{x1,x2,…,xn},最小数为min{x1,x2,…,xn}.已知实数1≤x≤y且三数能构成三角形的三边长,若t=max{
1
x
x
y
,y}•min{
1
x
x
y
,y},则t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位向量
i
j
k
两两所成的夹角均为θ(0<θ<π,且θ≠
π
2
),若空间向量
a
满足
a
=x
i
+y
j
+z
k
(x,y,z∈R),则有序实数对(x,y,z)称为向量
a
在“仿射”坐标系Oxyz(O为坐标原点)下的“仿射”坐标,记作
a
=(x,y,z)θ.有下列命题:
①已知
a
=(2,0,-1)θ
b
=(1,0,2)θ,则
a
b
=0;
②已知
a
=(x,y,0)
π
3
b
=(0,0,z)
π
3
,其中xyz≠0,则当且仅当x=y时,向量
a
b
的夹角取得最小值;
③已知
a
=(x1,y1,z1θ
b
=(x2,y2,z2θ,则
a
-
b
=(x1-x2y1-y2z1-z2)θ

④已知
OA
=(1,0,0)
π
3
OB
=(0,1,0)
π
3
OC
=(0,0,1)
π
3
,则三棱锥O-ABC体积为V=
2
12

其中真命题有
 
(填写真命题的所有序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图所示的程序框图,输出结果s的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱锥P-ABC的高为2,侧棱与底面所成的角为45°,则点A到侧面PBC的距离是(  )
A、
5
B、2
2
C、
2
D、
6
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知∠BAC在平面α内,PA是α的斜线,若∠PAB=∠PAC=∠BAC=60°,PA=a,则点P到平面α的距离为(  )
A、
3
3
a
B、
3
2
a
C、
6
3
a
D、
6
2
a

查看答案和解析>>

科目:高中数学 来源: 题型:

对于平面α和两条不同的直线m,n,下列命题是真命题的是(  )
A、若m⊥α,n⊥α,则m∥n
B、若m∥α,n∥α则m∥n
C、若m⊥α,m⊥n则n∥α
D、若m,n与α所成的角相等,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(-∞,-1)∪(1,+∞),对定义域内的任意x,满足f(x)+f(-x)=0,当x<-1时,f(x)=
1+ln(-x-1)
x+a
(a为常),且x=2是函数f(x)的一个极值点,
(Ⅰ)求实数a的值;
(Ⅱ)如果当x≥2时,不等式f(x)≥
m
x
恒成立,求实数m的最大值;
(Ⅲ)求证:n-2(
1
2
+
2
3
+
3
4
+…+
n
n+1
)<ln(n+1)

查看答案和解析>>

同步练习册答案