ÒÑÖªµ¥Î»ÏòÁ¿
i
£¬
j
£¬
k
Á½Á½Ëù³ÉµÄ¼Ð½Ç¾ùΪ¦È£¨0£¼¦È£¼¦Ð£¬ÇҦȡÙ
¦Ð
2
£©£¬Èô¿Õ¼äÏòÁ¿
a
Âú×ã
a
=x
i
+y
j
+z
k
£¨x£¬y£¬z¡ÊR£©£¬ÔòÓÐÐòʵÊý¶Ô£¨x£¬y£¬z£©³ÆÎªÏòÁ¿
a
ÔÚ¡°·ÂÉ䡱׸±êϵOxyz£¨OÎª×ø±êÔ­µã£©Ïµġ°·ÂÉ䡱׸±ê£¬¼Ç×÷
a
=£¨x£¬y£¬z£©¦È£®ÓÐÏÂÁÐÃüÌ⣺
¢ÙÒÑÖª
a
=£¨2£¬0£¬-1£©¦È£¬
b
=£¨1£¬0£¬2£©¦È£¬Ôò
a
b
=0£»
¢ÚÒÑÖª
a
=(x£¬y£¬0)
¦Ð
3
£¬
b
=(0£¬0£¬z)
¦Ð
3
£¬ÆäÖÐxyz¡Ù0£¬Ôòµ±ÇÒ½öµ±x=yʱ£¬ÏòÁ¿
a
b
µÄ¼Ð½ÇÈ¡µÃ×îСֵ£»
¢ÛÒÑÖª
a
=£¨x1£¬y1£¬z1£©¦È£¬
b
=£¨x2£¬y2£¬z2£©¦È£¬Ôò
a
-
b
=(x1-x2£¬y1-y2£¬z1-z2)¦È
£»
¢ÜÒÑÖª
OA
=(1£¬0£¬0)
¦Ð
3
£¬
OB
=(0£¬1£¬0)
¦Ð
3
£¬
OC
=(0£¬0£¬1)
¦Ð
3
£¬ÔòÈýÀâ×¶O-ABCÌå»ýΪV=
2
12
£®
ÆäÖÐÕæÃüÌâÓÐ
 
£¨ÌîÐ´ÕæÃüÌâµÄËùÓÐÐòºÅ£©£®
¿¼µã£ºµã¡¢Ïß¡¢Ãæ¼äµÄ¾àÀë¼ÆËã
רÌ⣺ж¨Òå,¿Õ¼äλÖùØÏµÓë¾àÀë
·ÖÎö£ºÀí½â·ÂÉä×ø±êµÄ¸ÅÄÀûÓÿռäÏòÁ¿µÄ¹²Ïß¶¨Àí¼°ÊýÁ¿»ýÔËËã¼´¿ÉÇó½â£®
½â´ð£º ½â£º¢ÙÈô
a
=£¨2£¬0£¬-1£©
o
£¬
b
=£¨1£¬0£¬2£©
o
£¬Ôò
a
b
=£¨2
i
-
k
£©•£¨
i
+2
k
£©=2+3
i
k
-2=3cos¦È£¬
¡ß0£¼¦È£¼¦Ð£¬ÇҦȡÙ
¦Ð
2
£¬¡à
a
b
¡Ù0£»
¢Ú
a
=(x£¬y£¬0)
¦Ð
3
£¬
b
=(0£¬0£¬z)
¦Ð
3
£¬ÆäÖÐxyz¡Ù0£¬ÏòÁ¿
a
b
µÄ¼Ð½ÇÈ¡µÃ×îСֵ£¬Á½ÏòÁ¿Í¬Ïò
´æÔÚʵÊý¦Ë£¾0£¬Âú×ã
a
=¦Ë
b
£¬¸ù¾Ý·ÂÉä×ø±êµÄ¶¨Ò壬Ò×Öª¢ÚΪ¼ÙÃüÌ⣻
¢ÛÒÑÖª
a
=£¨x1£¬y1£¬z1£©¦È£¬
b
=£¨x2£¬y2£¬z2£©¦È£¬Ôò
a
-
b
=£¨x1-x2£©
i
+£¨y1-y2£©
j
+£¨z1-z2£©
k
£¬
¡à
a
-
b
=(x1-x2£¬y1-y2£¬z1-z2)¦È
£»
¢ÜÒÑÖª
OA
=(1£¬0£¬0)
¦Ð
3
£¬
OB
=(0£¬1£¬0)
¦Ð
3
£¬
OC
=(0£¬0£¬1)
¦Ð
3
£¬ÔòÈýÀâ×¶O-ABCΪÕýËÄÃæÌ壬ÀⳤΪ1£¬¡àÌå»ýΪV=
2
12
£®
¹Ê´ð°¸Îª£º¢Û¢Ü£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²ìÁËÏòÁ¿µÄÏà¹Ø¸ÅÄ×ÛºÏÐÔ½ÏÇ¿£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒanÊÇSnºÍ1µÄµÈ²îÖÐÏµÈ²îÊýÁÐ{bn}Âú×ãb1=a1£¬b4=S3£®
£¨¢ñ£©ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨¢ò£©Éècn=
1
bnbn+1
£¬ÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬Ö¤Ã÷£ºTn£¼
1
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ÇSk=1k+2k+3k+¡­+nk£¬µ±k=1£¬2£¬3£¬¡­Ê±£¬¹Û²ìÏÂÁеÈʽ£º
S1=
1
2
n2+
1
2
n£¬
S2=
1
3
n3+
1
2
n2+
1
6
n£¬
S3=
1
4
n4+
1
2
n3+
1
4
n2
£¬
S4=
1
5
n5+
1
2
n4+
1
3
n3-
1
30
n£¬
S5=
1
6
n6+
1
2
n5+
5
12
n4+An2

£¬¡­
¿ÉÒÔÍÆ²â£¬A=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪ʵÊýx£¬yÂú×ã
y¡Ý1 
y¡Ü2x-1 
x+y¡Üm 
  
£¬Èç¹ûÄ¿±êº¯Êýz=x-yµÄ×îСֵÊÇ-1£¬ÄÇô´ËÄ¿±êº¯ÊýµÄ×î´óÖµÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¹ØÓÚxµÄ¶þÏîʽ£¨
x
+
a
3x
£©nÕ¹¿ªÊ½µÄ¶þÏîʽϵÊýÖ®ºÍΪ32£¬³£ÊýÏîΪ80£¬ÔòaµÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

n¸öÁ¬Ðø×ÔÈ»Êý°´¹æÂÉÅųÉÏÂ±í£¬¸ù¾Ý¹æÂÉ£¬´Ó2012µ½2014µÄ¼ýÍ··½ÏòÒÀ´ÎΪ
 
£®
¢Ù¡ý¡ú£»¢Ú¡ú¡ü£»¢Û¡ü¡ú£»¢Ü¡ú¡ý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ë«ÇúÏß
x2
a2
-
y2
b2
=1µÄ×óÓÒ½¹µãΪF1£¬F2£¬PÊÇË«ÇúÏß×óÖ§ÉÏÒ»µã£¬Âú×ã|
PF1
|=|
F1F2
|£¬Ö±ÏßPF2ÓëÔ²x2+y2=a2ÏàÇУ¬ÔòË«ÇúÏßµÄÀëÐÄÂÊeΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=cos
¦Ðx
3
£¬¸ù¾ÝÏÂÁпòͼ£¬Êä³öSµÄֵΪ£¨¡¡¡¡£©
A¡¢670
B¡¢670
1
2
C¡¢671
D¡¢672

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚËÄÀâ×¶M-ABCDÖУ¬µ×ÃæABCDÊDZ߳¤Îª2µÄÕý·½ÐΣ¬²àÀâAMµÄ³¤Îª3£¬ÇÒAMºÍAB¡¢ADµÄ¼Ð½Ç¶¼ÊÇ60¡ã£¬NÊÇCMµÄÖе㣬Éè
a
=
AB
£¬
b
=
AD
£¬
c
=A
M
£¬ÊÔÒÔ
a
£¬
b
£¬
c
Ϊ»ùÏòÁ¿±íʾ³öÏòÁ¿
BN
£¬²¢ÇóBNµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸