精英家教网 > 高中数学 > 题目详情
记Sk=1k+2k+3k+…+nk,当k=1,2,3,…时,观察下列等式:
S1=
1
2
n2+
1
2
n,
S2=
1
3
n3+
1
2
n2+
1
6
n,
S3=
1
4
n4+
1
2
n3+
1
4
n2

S4=
1
5
n5+
1
2
n4+
1
3
n3-
1
30
n,
S5=
1
6
n6+
1
2
n5+
5
12
n4+An2

,…
可以推测,A=
 
考点:归纳推理
专题:常规题型
分析:本题属于归纳推理题,主要是观察各式的项数、次数、系数等规律,本题只须归纳出系数的规律即可.
解答: 解:记Sk=1k+2k+3k+…+nk,当k=1,2,3,…时,观察下列等式:
S1=
1
2
n2+
1
2
n,可得:最高次项为2次,按n的降幂排列,奇次项系数
1
2
、偶次项系数
1
2
1
2
=
1
2
,相等;
S2=
1
3
n3+
1
2
n2+
1
6
n,可得:最高次项为3次,按n的降幂排列,奇次项系数和
1
3
+
1
6
=
1
2
,偶次项系数
1
2
1
2
=
1
2
,相等;
S3=
1
4
n4+
1
2
n3+
1
4
n2
,可得:最高次项为4次,按n的降幂排列,奇次项系数
1
3
、偶次项系数和
1
4
+
1
4
=
1
2
1
2
=
1
2
,相等;
S4=
1
5
n5+
1
2
n4+
1
3
n3-
1
30
n,可得:最高次项为5次,按n的降幂排列,奇次项系数和
1
5
+
1
3
-
1
30
=
1
2
,偶次项系数
1
2
1
5
+
1
3
-
1
30
=
1
2
,相等;
S5=
1
6
n6+
1
2
n5+
5
12
n4+An2
,可得:最高次项为6次,按n的降幂排列,奇次项和、偶次项系数和相等,均为
1
2

则有:
1
6
+
5
12
+A=
1
2
A=-
1
12

故答案为:-
1
12
点评:本题考查的是归纳推理,要求能够从系数中找出规律,再对规律加以应用,解决新的问题,这反映了归纳推理的创造性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
log2x,x>0
3x,x≤0
,且函数h(x)=f(x)+x-a有且只有一个零点,则实数a的取值范围是(  )
A、[1,+∞)
B、(1,+∞)
C、(-∞,1)
D、(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,4Sn=an2+2an-3,若a1,a2,a3成等比数列,且n≥3时,an>0
(1)求证:当n≥3时,{an}成等差数列;
(2)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和为Sn,且Sn=
1
4
(an+1)2(n∈N*).
(1)求a1、a2
(2)求证:数列{an}是等差数列;
(3)令bn=an-19,问数列{bn}的前多少项的和最小?最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合A={x∈R|x2-2x<0},B={y|y=ex+1,x∈R},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△OAB中,∠AOB=120°,OA=OB=2
3
,边AB的四等分点分别为A1,A2,A3,A1靠近A,执行如图算法后结果为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

记实数x1,x2,…,xn中的最大数为max{x1,x2,…,xn},最小数为min{x1,x2,…,xn}.已知实数1≤x≤y且三数能构成三角形的三边长,若t=max{
1
x
x
y
,y}•min{
1
x
x
y
,y},则t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位向量
i
j
k
两两所成的夹角均为θ(0<θ<π,且θ≠
π
2
),若空间向量
a
满足
a
=x
i
+y
j
+z
k
(x,y,z∈R),则有序实数对(x,y,z)称为向量
a
在“仿射”坐标系Oxyz(O为坐标原点)下的“仿射”坐标,记作
a
=(x,y,z)θ.有下列命题:
①已知
a
=(2,0,-1)θ
b
=(1,0,2)θ,则
a
b
=0;
②已知
a
=(x,y,0)
π
3
b
=(0,0,z)
π
3
,其中xyz≠0,则当且仅当x=y时,向量
a
b
的夹角取得最小值;
③已知
a
=(x1,y1,z1θ
b
=(x2,y2,z2θ,则
a
-
b
=(x1-x2y1-y2z1-z2)θ

④已知
OA
=(1,0,0)
π
3
OB
=(0,1,0)
π
3
OC
=(0,0,1)
π
3
,则三棱锥O-ABC体积为V=
2
12

其中真命题有
 
(填写真命题的所有序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

对于平面α和两条不同的直线m,n,下列命题是真命题的是(  )
A、若m⊥α,n⊥α,则m∥n
B、若m∥α,n∥α则m∥n
C、若m⊥α,m⊥n则n∥α
D、若m,n与α所成的角相等,则m∥n

查看答案和解析>>

同步练习册答案