精英家教网 > 高中数学 > 题目详情

在数列和等比数列中,
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列的前项和

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)先利用数列是等比数列,结合计算出数列的首项和公比,从而确定等比数列的通项公式,然后间接地求出数列的通项公式;解法二是先由数列是等比数列,结合定义证明数列是等差数列,然后将题设条件化为是有关数列的首项和公差的二元一次方程组,求出首项和公差的值进而求出数列的通项公式,最后确定等比数列的通项公式;
(Ⅱ)先根据,即数列的每一项均为等差数列中的项乘以等比数列中的项,结合利用错位相减法即可求出数列的前项和.
试题解析:解法一:(Ⅰ)依题意,      2分
设数列的公比为,由,可知,   3分
,得,又,则,   4分
,   5分
又由,得.      6分
(Ⅱ)依题意.      7分
 ,  ①
  ②  9分
①-②得,    11分
,故.      12分
解法二:(Ⅰ)依题意为等比数列,则(常数),
,可知,      2分

(常数),故为等差数列,    4分
的公差为,由,得
.    6分
(Ⅱ)同解法一.
考点:等差数列通项公式、等比数列的通项公式、错位相减法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设正项数列an为等比数列,它的前n项和为Sn,a1=1,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)已知是首项为1,公差为2的等差数列,求数列的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列中,的等比中项.
(I)求数列的通项公式:
(II)若.求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和满足:为常数,且). 
(1)求的通项公式;
(2)设,若数列为等比数列,求的值;
(3)在满足条件(2)的情形下,设,数列的前项和为 ,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列中,,等差数列中,,且
⑴求数列的通项公式
⑵求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn.求满足不等式>2 010的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是各项都为正数的等比数列, 是等差数列,且
(1)求数列,的通项公式;
(2)设数列的前项和为,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列中,是数列的前项和,对任意,有.函数,数列的首项

(Ⅰ)求数列的通项公式;(Ⅱ)令求证:是等比数列并求通项公式
(Ⅲ)令,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和(n为正整数).
(1)令,求证数列是等差数列;
(2)求数列的通项公式;
(3)令。是否存在最小的正整数,使得对于都有恒成立,若存在,求出的值。不存在,请说明理由.

查看答案和解析>>

同步练习册答案