精英家教网 > 高中数学 > 题目详情

已知数列的前项和满足:为常数,且). 
(1)求的通项公式;
(2)设,若数列为等比数列,求的值;
(3)在满足条件(2)的情形下,设,数列的前项和为 ,求证:

(1);(2);(3)证明过程详见解析.

解析试题分析:本题主要考查数列的通项公式和数列求和问题,考查学生的计算能力和分析问题的能力以及推理论证的能力.第一问,是由;第二问,先把第一问的结论代入,整理出表达式,已知为等比数列,所以用数列的前3项的关系列式求;第三问,把第二问的结果代入,化简表达式,本问应用了放缩法和分组求和的方法.
试题解析:(1)
时,
,即是等比数列. ∴;                4分
(2)由(Ⅰ)知,,若为等比数列,
则有
,解得,               7分
再将代入得成立, 所以.               8分
(3)证明:由(Ⅱ)知,所以

,                        9分

所以,               12分
从而

.                        14分
考点:1. 由;2.等比数列的通项公式;3.等比中项;4.放缩法;5.分组求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列的前项和为满足.
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前n项和为,
(I)证明:数列是等比数列;
(Ⅱ)若,数列的前n项和为,求不超过的最大整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

各项均为正数的等比数列中,
(1)求数列通项公式;
(2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,对任意成立,令,且是等比数列.
(1)求实数的值;
(2)求数列的通项公式;
(3)求和:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,点在函数的图像上,(其中
(Ⅰ)求证数列是等比数列;
(Ⅱ)设,求及数列的通项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列和等比数列中,
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项…的最小值记为Bn,dn=An-Bn.
(I)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*),写出d1,d2,d3,d4的值;
(II)设d为非负整数,证明:dn=-d(n=1,2,3…)的充分必要条件为{an}为公差为d的等差数列;
(III)证明:若a1=2,dn=1(n=1,2,3…),则{an}的项只能是1或2,且有无穷多项为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是各项为正数的等比数列,且a1=1,a2+a3=6,
(1)求该数列的通项公式
(2)若求该数列的前n项和

查看答案和解析>>

同步练习册答案