精英家教网 > 高中数学 > 题目详情

已知是各项为正数的等比数列,且a1=1,a2+a3=6,
(1)求该数列的通项公式
(2)若求该数列的前n项和

(1);(2)=

解析试题分析:(1)设数列的公比为q,由a1=1,a2+a3=6得:
q+q2=6,即q2+q-6=0,
解得q=-3(舍去)或q=2

(2)


==
考点:本题主要考查等比数列的概念,等比数列的通项公式,“裂项相消法”。
点评:中档题,涉及确定数列的通项公式,往往是依题意,建立方程(组),求得所需元素。“分组求和法”“裂项相消法”“错位相减法”,是高考经常考查的数列求和方法。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列的前项和满足:为常数,且). 
(1)求的通项公式;
(2)设,若数列为等比数列,求的值;
(3)在满足条件(2)的情形下,设,数列的前项和为 ,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列中,是数列的前项和,对任意,有.函数,数列的首项

(Ⅰ)求数列的通项公式;(Ⅱ)令求证:是等比数列并求通项公式
(Ⅲ)令,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知数列为等比数列,且,该数列的各项都为正数,求;(2)若等比数列的首项,末项,公比,求项数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项均为正数,为其前项和,对于任意的,满足关系式
(1)求数列的通项公式;
(2)设数列的通项公式是,前项和为,求证:对于任意的正整数n,总有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公比大于1的等比数列{}满足:++=28,且+2是的等差中项.(Ⅰ)求数列{}的通项公式;
(Ⅱ)若=,求{}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和(n为正整数).
(1)令,求证数列是等差数列;
(2)求数列的通项公式;
(3)令。是否存在最小的正整数,使得对于都有恒成立,若存在,求出的值。不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列中,,求其第4项及前5项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
若等比数列的前项和为,求数列的通项公式。

查看答案和解析>>

同步练习册答案