【题目】如图,∠C=
,
,M,N分别是BC,AB的中点,将△BMN沿直线MN折起,使二面角B'-MN-B的大小为
,则B'N与平面ABC所成角的正切值是( )
![]()
A.
B.
C.
D.![]()
【答案】C
【解析】
由∠C=
,
,先得到∠B′ND就为斜线B′N与平面ABC所成的角设为α,设BC=2,AC=
,BM=B'M=1,DM=B'Mcos60°=
,B'D=B'Msin60°=
,又MN=
,所以DN=
,所以tanα=
,解出即可.
解:∵∠C=
,
,M、N分别是BC、AB的中点,
将△BMN沿直线MN折起,使二面角B′-MN-B的大小为
.∴∠BMB′=
,
取BM的中点D,连B′D,ND,
由于折叠之前BM与CM都始终垂直于MN,这在折叠之后仍然成立,
∴折叠之后平面B′MN与平面BMN所成的二面角即为∠B′MD=60°,
并且B′在底面ACB内的投影点D就在BC上,∴B′D⊥BC,B′D⊥AD,B′D⊥面ABC,
∴∠B′ND就为斜线B′N与平面ABC所成的角设为α,
设BC=2,AC=
,BM=B'M=1,DM=B'Mcos60°=
,B'D=B'Msin60°=
,
又MN=
,所以DN=
,
所以tanα=
=
=
.
故选C.
![]()
科目:高中数学 来源: 题型:
【题目】命题
:方程
表示焦点在
轴上的双曲线:命题
:若存在
,使得
成立.
(1)如果命题
是真命题,求实数
的取值范围;
(2)如果“
”为假命题,“
”为真命题,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应绿色出行,某市在推出“共享单车”后,又推出“新能源租赁汽车”.每次租车收费的标准由两部分组成:①里程计费:1元/公里;②时间计费:
元/分.已知陈先生的家离上班公司
公里,每天上、下班租用该款汽车各一次.一次路上开车所用的时间记为
(分),现统计了50次路上开车所用时间,在各时间段内频数分布情况如下表所示
![]()
将各时间段发生的频率视为概率,一次路上开车所用的时间视为用车时间,范围为![]()
分.
(1)估计陈先生一次租用新能源租赁汽车所用的时间不低于
分钟的概率;
(2)若公司每月发放
元的交通补助费用,请估计是否足够让陈先生一个月上下班租用新能源租赁汽车(每月按
天计算),并说明理由.(同一时段,用该区间的中点值作代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,四点
中恰有三点在椭圆上.
(1)求椭圆C的方程
(2)椭圆C上是否存在不同的两点M,N关于直线
对称?若存在,请求出直线MN的方程,若不存在,请说明理由.
(3)设直线l不经过点
且与C相交于A,B两点,若直线
与直线
的斜率之和为1,求证直线l必过定点,并求出这个定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,曲线C由部分椭圆C1:
+
=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1所在椭圆的离心率为
.
![]()
(1)求a,b的值;
(2)过点B的直线l与C1,C2分别交于点P,Q(P,Q,A,B中任意两点均不重合),若AP⊥AQ,求直线l
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知项数为
项的有穷数列
,若同时满足以下三个条件:
,
为正整数
;
或1,其中
,3,
,
;
任取数列
中的两项
,
,剩下的
项中一定存在两项
,
,满足
,则称数列
为
数列.
若数列
是首项为1,公差为1,项数为6项的等差数列,判断数列
是否是
数列,并说明理由.
当
时,设
数列
中1出现
次,2出现
次,3出现
次,其中
,
,
.
求证:
,
,
;
当
时,求
数列
中项数
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,圆C的参数方程为:
为参数
,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,射线l的极坐标方程为
,
.
将圆C的参数方程化为极坐标方程;
设点A的直角坐标为
,射线l与圆C交于点
不同于点
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的离心率为
,右准线方程为
,
、
分别是椭圆
的左、右顶点,过右焦点
且斜率为
的直线
与椭圆
相交于
,
两点.
![]()
(1)求椭圆
的标准方程.
(2)记
、
的面积分别为
、
,若
,求
的值;
(3)设线段
的中点为
,直线
与右准线相交于点
,记直线
、
、
的斜率分别为
、
、
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com