精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\frac{1}{3}$x3-2x.
(1)若将函数f(x)的图象向下平移$\frac{1}{3}$个单位长度得函数h(x)的图象,求函数h(x)的图象在x=1处的切线方程;
(2)若函数g(x)=f(x)-x2-x+m在[-2,4]上有零点,求实数m的取值范围.

分析 (1)根据导数的几何意义可知h′(1)为切线的斜率,再求出切点坐标即可得出切线方程;
(2)判断g(x)在[-2,4]上的单调性得出g(x)在[-2,4]上的最值,令$\left\{\begin{array}{l}{{g(x)}_{max}≥0}\\{{g(x)}_{min}≤0}\end{array}\right.$即可求出m的范围.

解答 解:(1)h(x)=f(x)-$\frac{1}{3}$=$\frac{1}{3}$x3-2x-$\frac{1}{3}$,
∴h′(x)=x2-2,
∴切线的斜率k=h′(1)=-1,又h(1)=-2,
∴h(x)的图象在x=1处的切线方程为y+2=-(x-1),即x+y+1=0.
(2)g(x)=$\frac{1}{3}$x3-x2-3x+m,∴g′(x)=x2-2x-3,
令g′(x)=0得x2-2x-3=0,解得x=-1或x=3.
∴当x<-1或x>3时,g′(x)>0,当-1<x<3时,g′(x)<0.
∴g(x)在[-2,-1]上为增函数,在[-1,3]上为减函数,在[3,4]上为增函数.
∵g(-2)=-$\frac{2}{3}$+m,g(-1)=$\frac{5}{3}$+m,g(3)=-9+m,g(4)=-$\frac{20}{3}$+m,
∴g(x)在[-2,4]上的最大值为为$\frac{5}{3}$+m,最小值为-9+m,
∵函数g(x)在[-2,4]上有零点,
∴$\left\{\begin{array}{l}{\frac{5}{3}+m≥0}\\{-9+m≤0}\end{array}\right.$,解得-$\frac{5}{3}$≤m≤9.

点评 本题考查了导数的几何意义,函数的单调性与最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下列联表:
 总计
看营养说明503080
不看营养说明102030
总计6050110
(1)从这50名女生中按是否看营养说明分层抽样,抽取一个容量为5的样本,问样本中看与不看营养说明的女生各有多少名?
(2)从(1)中的5名女生中随机选取2名进行深度访谈,求选到看与不看营养说明的女生各1名的概率;
(3)根据以上列联表,问能否在犯错误的概率不超过0.010的前提下认为“性别与在购买食物时看营养说明有关系”?
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若f(x)=$\left\{\begin{array}{l}sinx,0≤x≤π\\ cosx,-π≤x≤0.\end{array}$则$\int{\begin{array}{l}π\\{-π}\end{array}}$f(x)dx=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.考察下列每组对象哪几组能够成集合?(  )
(1)比较小的数
(2)不大于10的偶数
(3)所有三角形
(4)高个子男生.
A.(1)(4)B.(2)(3)C.(2)D.(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数$f(x)=\left\{\begin{array}{l}{e^{1-x}},x≤1\\ ln({x-1}),x>1\end{array}\right.$,则使得f(x)≥2成立的x的取值范围是(-∞,1-ln2]∪[1+e2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC中,若$\frac{sinB-sinA}{sinC}$=$\frac{\sqrt{3}a+c}{a+b}$,则角B的大小为(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.专家研究表明,PM2.5是霾的主要成份,在研究PM2.5形成原因时,某研究人员研究了PM2.5与燃烧排放的CO2、NO2、CO、O2等物质的相关关系.下图是某地某月PM2.5与CO和O2相关性的散点图.

(Ⅰ)根据上面散点图,请你就CO,O2对PM2.5的影响关系做出初步评价;
(Ⅱ)根据有关规定,当CO排放量低于100μg/m2时CO排放量达标,反之为CO排放量超标;当PM2.5值大于200μg/m2时雾霾严重,反之雾霾不严重.根据PM2.5与CO相关性的散点图填写好下面2×2列联表,并判断有多大的把握认为“雾霾是否严重与排放量有关”:
雾霾不严重雾霾严重总计
CO排放量达标
CO排放量超标
总计
(Ⅲ)我们知道雾霾对交通影响较大.某市交通部门发现,在一个月内,当CO排放量分别是60,120,180时,某路口的交通流量(单位:万辆)一次是800,600,200,而在一个月内,CO排放量是60,120,180的概率一次是p,$\frac{p}{2}$,q($\frac{1}{2}<p<1$),求该路口一个月的交通流量期望值的取值范围.
附:
P(x2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若一个集合是另一个集合的子集,称两个集合构成“全食”;若两个集合有公共元素,但互不为对方子集,则称两个集合构成“偏食”.对于集合$A=\{-1,\frac{1}{2},1\}$,B={x|ax2=1,a≥0},若两个集合构成“全食”或“偏食”,则a的值为0或1或4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.关于x方程x2+2x+a=0(a∈R)的两个根为α、β,且|α|+|β|=3,求实数a的值.

查看答案和解析>>

同步练习册答案