精英家教网 > 高中数学 > 题目详情
直线l: x-2y+2=0过椭圆的左焦点F和一个顶点B, 则该椭圆的离心率为(     )
A.B.C.D.
D
分析:分别令直线方程中y=0和x=0,进而求得b和c,进而根据b,c和a的关系求得a,则椭圆的离心率可得.
解答:解:在l:x-2y+2=0上,
令y=0得F1(-2,0),
令x=0得B(0,1),即c=2,b=1.
∴a=,e==
故选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

过椭圆()的左焦点轴的垂线交椭圆于两点,为右焦点,若为等边三角形,则椭圆的离心率为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)如图,已知椭圆:+=1(a>b>0)的长轴AB长为4,离心率e=,O为坐标原点,过B的直线l与x轴垂直.P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连结AQ延长交直线于点M,N为的中点.
(1)求椭圆的方程;
(2)证明:Q点在以为直径的圆上;
(3)试判断直线QN与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的右焦点,直线轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则椭圆离心率的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以椭圆的焦点为顶点,离心率为的双曲线方程(    )
A.B.
C.D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的中心在坐标原点,焦点在轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点轴不垂直的直线交椭圆于两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)在线段上是否存在点,使得以为邻边的平行四边形是菱形? 若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以椭圆的中心为顶点,左准线为准线的抛物线方程是              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程表示焦点在y轴上的椭圆,则k的取值范围是  (   )
A.B.(0,2)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线l:x-2y+2=0过椭圆左焦点F1和一个顶点B,则该椭圆的离心率为
A.        B.        C.      D.

查看答案和解析>>

同步练习册答案