6£®¶ÔÓÚÏîÊýΪmµÄÓÐÇîÊýÁÐ{an}£¬¼Çbk=max{a1£¬a2£¬¡­£¬ak}£¨k=1£¬2£¬¡­£¬m£©£¬¼´bkΪa1£¬a2£¬¡­£¬akÖеÄ×î´óÖµ£¬²¢³ÆÊýÁÐ{bk}ÊÇ{an}µÄ¿ØÖÆÊýÁУ®Èç1£¬3£¬2£¬5£¬5µÄ¿ØÖÆÊýÁÐÊÇ1£¬3£¬3£¬5£¬5£®
£¨I£©Èô¸÷Ïî¾ùΪÕýÕûÊýµÄÊýÁÐ{an}µÄ¿ØÖÆÊýÁÐΪ2£¬3£¬4£¬5£¬5£¬Ð´³öËùÓзûºÏÌõ¼þµÄÊýÁÐ{an}£»
£¨II£©Éèm=100£¬Èôan=|2n-4|£¬{bn}ÊÇ{an}µÄ¿ØÖÆÊýÁУ¬Çó£¨b1-a1£©+£¨b2-a2£©+¡­+£¨b100-a100£©µÄÖµ£»
£¨III£©Éè{bn}ÊÇ{an}µÄ¿ØÖÆÊýÁУ¬Âú×ãak+bm-k+1=C£¨CΪ³£Êý£¬k=1£¬2£¬¡­£¬m£©£®
ÇóÖ¤£ºbk=ak£¨k=1£¬2£¬¡­£¬m£©£®

·ÖÎö £¨¢ñ£©¸ù¾Ý¿ØÖÆÊýÁе͍Ò壬½øÐÐÁоټ´¿ÉµÃµ½ÊýÁÐ{an}£»
£¨¢ò£©È·¶¨b1=a1=2£¬a2=0£¬b2=2£¬n¡Ý3ʱ£¬×ÜÓÐbn=an£¬´Ó¶øÇó£¨b1-a1£©+£¨b2-a2£©+¡­+£¨b100-a100£©µÄÖµ£»
£¨¢ó£©ÒÀÌâÒâ¿ÉµÃbk+1¡Ýbk£¬¸ù¾Ýak+bm-k+1=C£¬ak+1+bm-k=C£¬Ö¤Ã÷ak+1-ak=bm-k+1-bm-k¡Ý0£¬¼´Ö¤µÃ½áÂÛ£®

½â´ð ½â£º£¨I£©Èô¸÷Ïî¾ùΪÕýÕûÊýµÄÊýÁÐ{an}µÄ¿ØÖÆÊýÁÐΪ2£¬3£¬4£¬5£¬5£¬
ÔòÊýÁÐ{an}¿ÉÄÜΪ£º
¢Ù2£¬3£¬4£¬5£¬1£»
¢Ú2£¬3£¬4£¬5£¬2£»
¢Û2£¬3£¬4£¬5£¬3£»
¢Ü2£¬3£¬4£¬5£¬4£»
¢Ý2£¬3£¬4£¬5£¬5£®¡­£¨2·Ö£©
£¨II£©¡ßan=|2n-4|£¬{bn}ÊÇ{an}µÄ¿ØÖÆÊýÁУ¬
¡àb1=a1=2£¬a2=0£¬b2=2£®
µ±n¡Ý3ʱ£¬bn=an£¬
¡à£¨b1-a1£©+£¨b2-a2£©+¡­+£¨b100-a100£©=2£®¡­£¨5·Ö£©
Ö¤Ã÷£º£¨III£©ÒòΪbk=max{a1£¬a2£¬¡­ak}£¬
bk+1=max{a1£¬a2£¬¡­ak£¬ak+1}£¬
ËùÒÔbk+1¡Ýbk£®¡­£¨6·Ö£©
ÒòΪak+bm-k+1=C£¬ak+1+bm-k=C£¬
ËùÒÔak+1-ak=bm-k+1-bm-k¡Ý0£¬
¼´ak+1¡Ýak£®¡­£¨7·Ö£©
Òò´Ë£¬bk=ak£®¡­£¨8·Ö£©

µãÆÀ ±¾Ì⿼²éÊýÁеÄÓ¦Ó㬿¼²é¶Ô³éÏó¸ÅÄîµÄÀí½âÓë×ÛºÏÓ¦ÓõÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®C${\;}_{2}^{1}$+C${\;}_{3}^{2}$+C${\;}_{4}^{3}$+C${\;}_{5}^{4}$+¡­+C${\;}_{100}^{99}$=5049£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖª$\overrightarrow a£¬\overrightarrow b$ÊÇÆ½ÃæÏòÁ¿£¬Èç¹û|${\overrightarrow a}$|=$\sqrt{6}$£¬|${\overrightarrow b}$|=$\sqrt{3}$£¬£¨${\overrightarrow a$+2$\overrightarrow b}$£©¡Í£¨2$\overrightarrow a$-$\overrightarrow b}$£©£¬ÄÇô$\overrightarrow a$Óë$\overrightarrow b$µÄÊýÁ¿»ýµÈÓÚ£¨¡¡¡¡£©
A£®-2B£®-1C£®2D£®3$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÈôP=$\sqrt{7}$-1£¬Q=$\sqrt{11}$-$\sqrt{5}$£¬ÔòPÓëQµÄ´óС¹ØÏµÊÇP£¾Q£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èô·ÇÁãÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$|=|$\overrightarrow{b}$|£¬£¨2$\overrightarrow{a}$+$\overrightarrow{b}$£©•$\overrightarrow{b}$=0£¬Ôò$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ120¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èô3λÀÏʦºÍ3 ¸öѧÉúËæ»úÕ¾³ÉÒ»ÅÅÕÕÏ࣬ÔòÈκÎÁ½¸öѧÉú¶¼»¥²»ÏàÁڵĸÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{20}$B£®$\frac{1}{10}$C£®$\frac{1}{5}$D£®$\frac{2}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Éèf£¨x£©=ex-ax2£¬g£¨x£©=kx+1£¨a¡ÊR£¬k¡ÊR£©£¬eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£®
£¨1£©Èôa=1ʱ£¬Ö±Ïßy=g£¨x£©ÓëÇúÏßy=f¡ä£¨x£©ÏàÇУ¨f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£©£¬ÇókµÄÖµ£»
£¨2£©Éèh£¨x£©=f£¨x£©-g£¨x£©£¬Èôh£¨1£©=0£¬ÇÒº¯Êýh£¨x£©ÔÚ£¨0£¬1£©ÄÚÓÐÁãµã£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èô¼¯ºÏA={1£¬2£¬3£¬4}£¬B={2£¬4£¬7£¬8}£¬C={1£¬3£¬4£¬5£¬9}£¬Ôò¼¯ºÏ£¨A¡ÈB£©¡ÉCµÄ×Ó¼¯¸öÊýÊÇ£¨¡¡¡¡£©
A£®3B£®6C£®8D£®9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=lnx-ax£¬£¨a¡ÊR£©
£¨¢ñ£©Èôº¯Êýf£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦ÇÐÏß·½³ÌΪy=3x+b£¬Çóa£¬bµÄÖµ£»
£¨¢ò£©µ±a£¾0ʱ£¬Çóº¯Êýf£¨x£©ÔÚ[1£¬2]ÉϵÄ×îСֵ£»
£¨¢ó£©Éèg£¨x£©=x2-2x+2£¬Èô¶ÔÈÎÒâx1¡Ê£¨0£¬+¡Þ£©£¬¾ù´æÔÚx2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©£¼g£¨x2£©£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸