分析 根据两个向量的数量积的值,整理出两个向量之间的关系,得到两个向量的数量积2倍等于向量的模长的平方,写出求夹角的公式,得到结果.
解答 解:设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,
∵非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,
∴(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=2$\overrightarrow{a}$•$\overrightarrow{b}$+|$\overrightarrow{b}$|2=2|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cosθ+|$\overrightarrow{b}$|2=0,
∴cosθ=-$\frac{1}{2}$
∵0°≤θ≤180°
∴θ=120°,
故答案为:120°
点评 本题考查数量积表示两个向量的夹角,本题解题的关键是整理出两个向量的数量积与模长之间的关系.
科目:高中数学 来源: 题型:选择题
| A. | 若直线a∥平面α,直线b∥平面α,则直线a不一定平行于直线b | |
| B. | 若平面α不垂直于平面β,则α内一定不存在直线垂直于平面β | |
| C. | 若平面α⊥平面β,则α内一定不存在直线平行于平面β | |
| D. | 若平面α⊥平面v,平面β⊥平面v,α∩β=l,则l一定垂直于平面v |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-1<x<3} | B. | {x|-3<x<1} | C. | {x|x<-3或x>1} | D. | {x|x<-1或x>3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{300}$ | B. | $\frac{1}{425}$ | C. | $\frac{1}{450}$ | D. | $\frac{1}{128}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com