精英家教网 > 高中数学 > 题目详情
11.曲线y=4-x2与x轴围成封闭图形的面积为$\frac{32}{3}$.

分析 由4-x2=0,得x=-2,x=2,再用定积分即可求出曲线y=4-x2与x轴围成封闭图形的面积.

解答 解:由4-x2=0,得x=-2,x=2,
∴曲线y=4-x2与x轴围成封闭图形的面积为S=${∫}_{-2}^{2}(4-{x}^{2})dx$=$(4x-\frac{1}{3}{x}^{3}){|}_{-2}^{2}$=$\frac{32}{3}$.
故答案为:$\frac{32}{3}$.

点评 本题考查学生会利用定积分求平面图形面积.会利用数形结合的数学思想来解决实际问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设D=$|\begin{array}{l}{1}&{1}&{1}&{1}\\{2}&{3}&{4}&{5}\\{-2}&{7}&{2}&{3}\\{5}&{4}&{3}&{7}\end{array}|$,则A41+A42+A43+A44=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-$\frac{a}{2}$x2ex,其中a∈R,e=2.71828…为自然对数的底数.
(1)讨论函数f(x)在区间(0,+∞)上的单调性;
(2)对于区间(0,1)上任意一个实数a,是否存在x>0,使得f(x)>x+1?若存在,请求出符合条件的一个x,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,且Sn+an=2-($\frac{1}{2}}$)n-1(n∈N*).
(Ⅰ)令bn=2nan,求证:数列{bn}是等差数列;
(Ⅱ)令cn=$\frac{n+1}{n}$an,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.下列各组式子是否表示同一函数,为什么?
(1)f(x)=|x|,φ(t)=$\sqrt{{t}^{2}}$;
(2)y=$\sqrt{{x}^{2}}$,y=($\sqrt{x}$)2
(3)y=$\sqrt{x+1}$•$\sqrt{x-1}$,y=$\sqrt{{x}^{2}-1}$;
(4)y=$\sqrt{1+x}$•$\sqrt{1-x}$,y=$\sqrt{1-{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.C${\;}_{2}^{1}$+C${\;}_{3}^{2}$+C${\;}_{4}^{3}$+C${\;}_{5}^{4}$+…+C${\;}_{100}^{99}$=5049.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=log2(x-3)的定义域为(  )
A.[3,+∞)B.(3,+∞)C.(-∞,-3)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设i是虚数单位,若复数z满足z(1-i)=1+i,则复数z=(  )
A.-1B.1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°.

查看答案和解析>>

同步练习册答案