精英家教网 > 高中数学 > 题目详情
10.若O为坐标原点,已知实数x,y满足条件$\left\{\begin{array}{l}x+y≥1\\ x-y≥-1\\ 2x-y≤2\end{array}\right.$,在可行域内任取一点P(x,y),则|OP|的最小值为(  )
A.1B.$\sqrt{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{3}{2}$

分析 由约束条件作出可行域,由点到直线的距离公式求出O到直线x+y-4=0的距离,数形结合可得答案.

解答 解:由实数x,y满足条件$\left\{\begin{array}{l}x+y≥1\\ x-y≥-1\\ 2x-y≤2\end{array}\right.$,作可行域如图,
在可行域内任取一点P(x,y),则|OP|的最小值,就是图形中OA的距离,
即:O到直线x+y-1=0的距离为$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
∴|OP|的最小值为$\frac{\sqrt{2}}{2}$.
故选:C.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,训练了点到直线的距离公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.平面直角坐标系中,已知O为坐标原点,点A、B的坐标分别为(1,1)、(-3,3).若动点P满足$\overrightarrow{OP}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,其中λ、μ∈R,且λ+μ=1,则点P的轨迹方程为(  )
A.x-y=0B.x+y=0C.x+2y-3=0D.(x+1)2+(y-2)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.《九章算术》是我国古代数学名著,也是古代东方数学的代表作.书中有如下问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“已知直角三角形两直角边长分别为5步和12步,问其内接正方形边长为多少步?”现若向此三角形内投豆子,则落在其内接正方形内的概率是(  )
A.$\frac{60}{289}$B.$\frac{90}{289}$C.$\frac{120}{289}$D.$\frac{240}{289}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知i是虚数单位,则复数$\frac{1+i}{2i}$的虚部为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$iD.$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数$f(x)=\left\{\begin{array}{l}{(\frac{1}{2})^x}-2\;\;,\;x≤-1,\;\\(x-2)(|x|-1)\;,x>-1.\end{array}\right.$,则f(f(-2))=0,若f(x)≥2,则x的取值范围为x≥3或x=0或x≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,平面ABCD⊥平面ADEF,四边形ABCD为菱形,四边形ADEF为矩形,M,N分别是EF,BC的中点,AB=2AF,∠CBA=
60°.
(1)求证:DM⊥平面MNA;
(2)若三棱锥A-DMN的体积为$\frac{{\sqrt{3}}}{3}$,求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,若sin2(B+C)+cos2B+cos2C+sinBsinC≥2,则角A的取值范围是(  )
A.$(0,\frac{π}{6}]$B.$[\frac{π}{3},\frac{π}{2}]$C.$(0,\frac{π}{3}]$D.$[\frac{π}{3},π)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知各项都为正数的数列{an}满足a1=1,an2-(2an-1-1)an-2an-1=0(n≥2,n∈N*),数列{bn}满足b1=1,b1+$\frac{1}{2}$b2+$\frac{1}{3}$b3+…+$\frac{1}{n}$bn=bn+1-1(n∈N*
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=a|x-2|+x.
(1)若函数f(x)有最大值,求a的取值范围;
(2)若a=1,求不等式f(x)>|2x-3|的解集.

查看答案和解析>>

同步练习册答案